Cargando…
Outlier detection using autoencoders
Outlier detection is a crucial part of any data analysis applications. The goal of outlier detection is to separate a core of regular observations from some polluting ones, called “outliers”. We propose an outlier detection method using deep autoencoder. In our research the invented method was appl...
Autor principal: | Lyudchik, Olga |
---|---|
Lenguaje: | eng |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2209085 |
Ejemplares similares
-
Outlier detection: a data mining perspective
por: Ranga Suri, N N R, et al.
Publicado: (2019) -
Advanced deep learning with Keras: apply deep learning techniques, autoencoders, GANs, variational autoencoders, deep reinforcement learning, policy gradients, and more
por: Atienza, Rowel
Publicado: (2018) -
Outlier Vehicle Trajectory Detection Using Deep Autoencoders in Santiago, Chile
por: Peralta, Billy, et al.
Publicado: (2023) -
Stacked Autoencoders for Outlier Detection in Over-the-Horizon Radar Signals
por: Protopapadakis, Eftychios, et al.
Publicado: (2017) -
L0-norm Constrained Autoencoders for Unsupervised Outlier Detection
por: Ishii, Yoshinao, et al.
Publicado: (2020)