Cargando…

Neural Networks for the Extraction of the ΛC Signal in p-Pb collisions at 
 √sNN = 5.02 TeV

The charmed baryon ΛC is of interest for the characterization of the quark-gluon plasma (QGP) created in Pb-Pb collisions, due to its sensitivity to c-quark thermalization and to the hadronization mechanisms. The measurement in pp an p-Pb collisions is of interest both as a reference for the Pb- Pb...

Descripción completa

Detalles Bibliográficos
Autor principal: Giampaolo, Alberto
Lenguaje:eng
Publicado: 2016
Materias:
Acceso en línea:http://cds.cern.ch/record/2209102
Descripción
Sumario:The charmed baryon ΛC is of interest for the characterization of the quark-gluon plasma (QGP) created in Pb-Pb collisions, due to its sensitivity to c-quark thermalization and to the hadronization mechanisms. The measurement in pp an p-Pb collisions is of interest both as a reference for the Pb- Pb result and in the context of recent observations suggesting the possible creation of a QGP in small colliding systems. This project is focused on the study of the extraction of the ΛC signal in p-Pb collisions with the ALICE detector, through the usage of deep learning, a machine learning technique. In a few weeks we were able to reproduce the results of the existing BDT analysis with a simple shallow networks. In the 6 to 8 pT bin, deep networks using low-level variables get close to the performance of the topological variable analysis, but with the architectures tested in this project they do not seem to be able to outperform it.