Cargando…

Perturbed black holes in Einstein-dilaton-Gauss-Bonnet gravity: stability, ringdown, and gravitational-wave emission

Gravitational waves emitted by distorted black holes---such as those arising from the coalescence of two neutron stars or black holes---carry not only information about the corresponding spacetime but also about the underlying theory of gravity. Although general relativity remains the simplest, most...

Descripción completa

Detalles Bibliográficos
Autores principales: Blázquez-Salcedo, Jose Luis, Macedo, Caio F. B., Cardoso, Vitor, Ferrari, Valeria, Gualtieri, Leonardo, Khoo, Fech Scen, Kunz, Jutta, Pani, Paolo
Lenguaje:eng
Publicado: 2016
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevD.94.104024
http://cds.cern.ch/record/2213708
Descripción
Sumario:Gravitational waves emitted by distorted black holes---such as those arising from the coalescence of two neutron stars or black holes---carry not only information about the corresponding spacetime but also about the underlying theory of gravity. Although general relativity remains the simplest, most elegant and viable theory of gravitation, there are generic and robust arguments indicating that it is not the ultimate description of the gravitational universe. Here we focus on a particularly appealing extension of general relativity, which corrects Einstein's theory through the addition of terms which are second order in curvature: the topological Gauss-Bonnet invariant coupled to a dilaton. We study gravitational-wave emission from black holes in this theory, and (i) find strong evidence that black holes are linearly (mode) stable against both axial and polar perturbations; (ii) discuss how the quasinormal modes of black holes can be excited during collisions involving black holes, and finally (iii) show that future ringdown detections with large signal-to-noise ratio would improve current constraints on the coupling parameter of the theory.