Cargando…
Background rejection in NEXT using deep neural networks
We investigate the potential of using deep learning techniques to reject background events in searches for neutrinoless double beta decay with high pressure xenon time projection chambers capable of detailed track reconstruction. The differences in the topological signatures of background and signal...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1748-0221/12/01/T01004 http://cds.cern.ch/record/2217394 |
_version_ | 1780952091417640960 |
---|---|
author | Renner, J. Farbin, A. Vidal, J. Muñoz Benlloch-Rodríguez, J.M. Botas, A. Ferrario, P. Gómez-Cadenas, J.J. Álvarez, V. Azevedo, C.D.R. Borges, F.I.G. Cárcel, S. Carrión, J.V. Cebrián, S. Cervera, A. Conde, C.A.N. Díaz, J. Diesburg, M. Esteve, R. Fernandes, L.M.P. Ferreira, A.L. Freitas, E.D.C. Goldschmidt, A. González-Díaz, D. Gutiérrez, R.M. Hauptman, J. Henriques, C.A.O. Hernando Morata, J. A. Herrero, V. Jones, B. Labarga, L. Laing, A. Lebrun, P. Liubarsky, I. López-March, N. Lorca, D. Losada, M. Martín-Albo, J. Martínez-Lema, G. Martínez, A. Monrabal, F. Monteiro, C.M.B. Mora, F.J. Moutinho, L.M. Nebot-Guinot, M. Novella, P. Nygren, D. Palmeiro, B. Para, A. Pérez, J. Querol, M. Ripoll, L. Rodríguez, J. Santos, F.P. dos Santos, J.M.F. Serra, L. Shuman, D. Simón, A. Sofka, C. Sorel, M. Toledo, J.F. Torrent, J. Tsamalaidze, Z. Veloso, J.F.C.A. White, J. Webb, R. Yahlali, N. Yepes-Ramírez, H. |
author_facet | Renner, J. Farbin, A. Vidal, J. Muñoz Benlloch-Rodríguez, J.M. Botas, A. Ferrario, P. Gómez-Cadenas, J.J. Álvarez, V. Azevedo, C.D.R. Borges, F.I.G. Cárcel, S. Carrión, J.V. Cebrián, S. Cervera, A. Conde, C.A.N. Díaz, J. Diesburg, M. Esteve, R. Fernandes, L.M.P. Ferreira, A.L. Freitas, E.D.C. Goldschmidt, A. González-Díaz, D. Gutiérrez, R.M. Hauptman, J. Henriques, C.A.O. Hernando Morata, J. A. Herrero, V. Jones, B. Labarga, L. Laing, A. Lebrun, P. Liubarsky, I. López-March, N. Lorca, D. Losada, M. Martín-Albo, J. Martínez-Lema, G. Martínez, A. Monrabal, F. Monteiro, C.M.B. Mora, F.J. Moutinho, L.M. Nebot-Guinot, M. Novella, P. Nygren, D. Palmeiro, B. Para, A. Pérez, J. Querol, M. Ripoll, L. Rodríguez, J. Santos, F.P. dos Santos, J.M.F. Serra, L. Shuman, D. Simón, A. Sofka, C. Sorel, M. Toledo, J.F. Torrent, J. Tsamalaidze, Z. Veloso, J.F.C.A. White, J. Webb, R. Yahlali, N. Yepes-Ramírez, H. |
author_sort | Renner, J. |
collection | CERN |
description | We investigate the potential of using deep learning techniques to reject background events in searches for neutrinoless double beta decay with high pressure xenon time projection chambers capable of detailed track reconstruction. The differences in the topological signatures of background and signal events can be learned by deep neural networks via training over many thousands of events. These networks can then be used to classify further events as signal or background, providing an additional background rejection factor at an acceptable loss of efficiency. The networks trained in this study performed better than previous methods developed based on the use of the same topological signatures by a factor of 1.2 to 1.6, and there is potential for further improvement. |
id | cern-2217394 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2016 |
record_format | invenio |
spelling | cern-22173942022-08-10T12:34:42Zdoi:10.1088/1748-0221/12/01/T01004http://cds.cern.ch/record/2217394engRenner, J.Farbin, A.Vidal, J. MuñozBenlloch-Rodríguez, J.M.Botas, A.Ferrario, P.Gómez-Cadenas, J.J.Álvarez, V.Azevedo, C.D.R.Borges, F.I.G.Cárcel, S.Carrión, J.V.Cebrián, S.Cervera, A.Conde, C.A.N.Díaz, J.Diesburg, M.Esteve, R.Fernandes, L.M.P.Ferreira, A.L.Freitas, E.D.C.Goldschmidt, A.González-Díaz, D.Gutiérrez, R.M.Hauptman, J.Henriques, C.A.O.Hernando Morata, J. A.Herrero, V.Jones, B.Labarga, L.Laing, A.Lebrun, P.Liubarsky, I.López-March, N.Lorca, D.Losada, M.Martín-Albo, J.Martínez-Lema, G.Martínez, A.Monrabal, F.Monteiro, C.M.B.Mora, F.J.Moutinho, L.M.Nebot-Guinot, M.Novella, P.Nygren, D.Palmeiro, B.Para, A.Pérez, J.Querol, M.Ripoll, L.Rodríguez, J.Santos, F.P.dos Santos, J.M.F.Serra, L.Shuman, D.Simón, A.Sofka, C.Sorel, M.Toledo, J.F.Torrent, J.Tsamalaidze, Z.Veloso, J.F.C.A.White, J.Webb, R.Yahlali, N.Yepes-Ramírez, H.Background rejection in NEXT using deep neural networkshep-exParticle Physics - Experimentphysics.ins-detDetectors and Experimental TechniquesWe investigate the potential of using deep learning techniques to reject background events in searches for neutrinoless double beta decay with high pressure xenon time projection chambers capable of detailed track reconstruction. The differences in the topological signatures of background and signal events can be learned by deep neural networks via training over many thousands of events. These networks can then be used to classify further events as signal or background, providing an additional background rejection factor at an acceptable loss of efficiency. The networks trained in this study performed better than previous methods developed based on the use of the same topological signatures by a factor of 1.2 to 1.6, and there is potential for further improvement.arXiv:1609.06202FERMILAB-PUB-16-422-CDoai:cds.cern.ch:22173942016-09-20 |
spellingShingle | hep-ex Particle Physics - Experiment physics.ins-det Detectors and Experimental Techniques Renner, J. Farbin, A. Vidal, J. Muñoz Benlloch-Rodríguez, J.M. Botas, A. Ferrario, P. Gómez-Cadenas, J.J. Álvarez, V. Azevedo, C.D.R. Borges, F.I.G. Cárcel, S. Carrión, J.V. Cebrián, S. Cervera, A. Conde, C.A.N. Díaz, J. Diesburg, M. Esteve, R. Fernandes, L.M.P. Ferreira, A.L. Freitas, E.D.C. Goldschmidt, A. González-Díaz, D. Gutiérrez, R.M. Hauptman, J. Henriques, C.A.O. Hernando Morata, J. A. Herrero, V. Jones, B. Labarga, L. Laing, A. Lebrun, P. Liubarsky, I. López-March, N. Lorca, D. Losada, M. Martín-Albo, J. Martínez-Lema, G. Martínez, A. Monrabal, F. Monteiro, C.M.B. Mora, F.J. Moutinho, L.M. Nebot-Guinot, M. Novella, P. Nygren, D. Palmeiro, B. Para, A. Pérez, J. Querol, M. Ripoll, L. Rodríguez, J. Santos, F.P. dos Santos, J.M.F. Serra, L. Shuman, D. Simón, A. Sofka, C. Sorel, M. Toledo, J.F. Torrent, J. Tsamalaidze, Z. Veloso, J.F.C.A. White, J. Webb, R. Yahlali, N. Yepes-Ramírez, H. Background rejection in NEXT using deep neural networks |
title | Background rejection in NEXT using deep neural networks |
title_full | Background rejection in NEXT using deep neural networks |
title_fullStr | Background rejection in NEXT using deep neural networks |
title_full_unstemmed | Background rejection in NEXT using deep neural networks |
title_short | Background rejection in NEXT using deep neural networks |
title_sort | background rejection in next using deep neural networks |
topic | hep-ex Particle Physics - Experiment physics.ins-det Detectors and Experimental Techniques |
url | https://dx.doi.org/10.1088/1748-0221/12/01/T01004 http://cds.cern.ch/record/2217394 |
work_keys_str_mv | AT rennerj backgroundrejectioninnextusingdeepneuralnetworks AT farbina backgroundrejectioninnextusingdeepneuralnetworks AT vidaljmunoz backgroundrejectioninnextusingdeepneuralnetworks AT benllochrodriguezjm backgroundrejectioninnextusingdeepneuralnetworks AT botasa backgroundrejectioninnextusingdeepneuralnetworks AT ferrariop backgroundrejectioninnextusingdeepneuralnetworks AT gomezcadenasjj backgroundrejectioninnextusingdeepneuralnetworks AT alvarezv backgroundrejectioninnextusingdeepneuralnetworks AT azevedocdr backgroundrejectioninnextusingdeepneuralnetworks AT borgesfig backgroundrejectioninnextusingdeepneuralnetworks AT carcels backgroundrejectioninnextusingdeepneuralnetworks AT carrionjv backgroundrejectioninnextusingdeepneuralnetworks AT cebrians backgroundrejectioninnextusingdeepneuralnetworks AT cerveraa backgroundrejectioninnextusingdeepneuralnetworks AT condecan backgroundrejectioninnextusingdeepneuralnetworks AT diazj backgroundrejectioninnextusingdeepneuralnetworks AT diesburgm backgroundrejectioninnextusingdeepneuralnetworks AT estever backgroundrejectioninnextusingdeepneuralnetworks AT fernandeslmp backgroundrejectioninnextusingdeepneuralnetworks AT ferreiraal backgroundrejectioninnextusingdeepneuralnetworks AT freitasedc backgroundrejectioninnextusingdeepneuralnetworks AT goldschmidta backgroundrejectioninnextusingdeepneuralnetworks AT gonzalezdiazd backgroundrejectioninnextusingdeepneuralnetworks AT gutierrezrm backgroundrejectioninnextusingdeepneuralnetworks AT hauptmanj backgroundrejectioninnextusingdeepneuralnetworks AT henriquescao backgroundrejectioninnextusingdeepneuralnetworks AT hernandomorataja backgroundrejectioninnextusingdeepneuralnetworks AT herrerov backgroundrejectioninnextusingdeepneuralnetworks AT jonesb backgroundrejectioninnextusingdeepneuralnetworks AT labargal backgroundrejectioninnextusingdeepneuralnetworks AT lainga backgroundrejectioninnextusingdeepneuralnetworks AT lebrunp backgroundrejectioninnextusingdeepneuralnetworks AT liubarskyi backgroundrejectioninnextusingdeepneuralnetworks AT lopezmarchn backgroundrejectioninnextusingdeepneuralnetworks AT lorcad backgroundrejectioninnextusingdeepneuralnetworks AT losadam backgroundrejectioninnextusingdeepneuralnetworks AT martinalboj backgroundrejectioninnextusingdeepneuralnetworks AT martinezlemag backgroundrejectioninnextusingdeepneuralnetworks AT martineza backgroundrejectioninnextusingdeepneuralnetworks AT monrabalf backgroundrejectioninnextusingdeepneuralnetworks AT monteirocmb backgroundrejectioninnextusingdeepneuralnetworks AT morafj backgroundrejectioninnextusingdeepneuralnetworks AT moutinholm backgroundrejectioninnextusingdeepneuralnetworks AT nebotguinotm backgroundrejectioninnextusingdeepneuralnetworks AT novellap backgroundrejectioninnextusingdeepneuralnetworks AT nygrend backgroundrejectioninnextusingdeepneuralnetworks AT palmeirob backgroundrejectioninnextusingdeepneuralnetworks AT paraa backgroundrejectioninnextusingdeepneuralnetworks AT perezj backgroundrejectioninnextusingdeepneuralnetworks AT querolm backgroundrejectioninnextusingdeepneuralnetworks AT ripolll backgroundrejectioninnextusingdeepneuralnetworks AT rodriguezj backgroundrejectioninnextusingdeepneuralnetworks AT santosfp backgroundrejectioninnextusingdeepneuralnetworks AT dossantosjmf backgroundrejectioninnextusingdeepneuralnetworks AT serral backgroundrejectioninnextusingdeepneuralnetworks AT shumand backgroundrejectioninnextusingdeepneuralnetworks AT simona backgroundrejectioninnextusingdeepneuralnetworks AT sofkac backgroundrejectioninnextusingdeepneuralnetworks AT sorelm backgroundrejectioninnextusingdeepneuralnetworks AT toledojf backgroundrejectioninnextusingdeepneuralnetworks AT torrentj backgroundrejectioninnextusingdeepneuralnetworks AT tsamalaidzez backgroundrejectioninnextusingdeepneuralnetworks AT velosojfca backgroundrejectioninnextusingdeepneuralnetworks AT whitej backgroundrejectioninnextusingdeepneuralnetworks AT webbr backgroundrejectioninnextusingdeepneuralnetworks AT yahlalin backgroundrejectioninnextusingdeepneuralnetworks AT yepesramirezh backgroundrejectioninnextusingdeepneuralnetworks |