Cargando…

Background rejection in NEXT using deep neural networks

We investigate the potential of using deep learning techniques to reject background events in searches for neutrinoless double beta decay with high pressure xenon time projection chambers capable of detailed track reconstruction. The differences in the topological signatures of background and signal...

Descripción completa

Detalles Bibliográficos
Autores principales: Renner, J., Farbin, A., Vidal, J. Muñoz, Benlloch-Rodríguez, J.M., Botas, A., Ferrario, P., Gómez-Cadenas, J.J., Álvarez, V., Azevedo, C.D.R., Borges, F.I.G., Cárcel, S., Carrión, J.V., Cebrián, S., Cervera, A., Conde, C.A.N., Díaz, J., Diesburg, M., Esteve, R., Fernandes, L.M.P., Ferreira, A.L., Freitas, E.D.C., Goldschmidt, A., González-Díaz, D., Gutiérrez, R.M., Hauptman, J., Henriques, C.A.O., Hernando Morata, J. A., Herrero, V., Jones, B., Labarga, L., Laing, A., Lebrun, P., Liubarsky, I., López-March, N., Lorca, D., Losada, M., Martín-Albo, J., Martínez-Lema, G., Martínez, A., Monrabal, F., Monteiro, C.M.B., Mora, F.J., Moutinho, L.M., Nebot-Guinot, M., Novella, P., Nygren, D., Palmeiro, B., Para, A., Pérez, J., Querol, M., Ripoll, L., Rodríguez, J., Santos, F.P., dos Santos, J.M.F., Serra, L., Shuman, D., Simón, A., Sofka, C., Sorel, M., Toledo, J.F., Torrent, J., Tsamalaidze, Z., Veloso, J.F.C.A., White, J., Webb, R., Yahlali, N., Yepes-Ramírez, H.
Lenguaje:eng
Publicado: 2016
Materias:
Acceso en línea:https://dx.doi.org/10.1088/1748-0221/12/01/T01004
http://cds.cern.ch/record/2217394
_version_ 1780952091417640960
author Renner, J.
Farbin, A.
Vidal, J. Muñoz
Benlloch-Rodríguez, J.M.
Botas, A.
Ferrario, P.
Gómez-Cadenas, J.J.
Álvarez, V.
Azevedo, C.D.R.
Borges, F.I.G.
Cárcel, S.
Carrión, J.V.
Cebrián, S.
Cervera, A.
Conde, C.A.N.
Díaz, J.
Diesburg, M.
Esteve, R.
Fernandes, L.M.P.
Ferreira, A.L.
Freitas, E.D.C.
Goldschmidt, A.
González-Díaz, D.
Gutiérrez, R.M.
Hauptman, J.
Henriques, C.A.O.
Hernando Morata, J. A.
Herrero, V.
Jones, B.
Labarga, L.
Laing, A.
Lebrun, P.
Liubarsky, I.
López-March, N.
Lorca, D.
Losada, M.
Martín-Albo, J.
Martínez-Lema, G.
Martínez, A.
Monrabal, F.
Monteiro, C.M.B.
Mora, F.J.
Moutinho, L.M.
Nebot-Guinot, M.
Novella, P.
Nygren, D.
Palmeiro, B.
Para, A.
Pérez, J.
Querol, M.
Ripoll, L.
Rodríguez, J.
Santos, F.P.
dos Santos, J.M.F.
Serra, L.
Shuman, D.
Simón, A.
Sofka, C.
Sorel, M.
Toledo, J.F.
Torrent, J.
Tsamalaidze, Z.
Veloso, J.F.C.A.
White, J.
Webb, R.
Yahlali, N.
Yepes-Ramírez, H.
author_facet Renner, J.
Farbin, A.
Vidal, J. Muñoz
Benlloch-Rodríguez, J.M.
Botas, A.
Ferrario, P.
Gómez-Cadenas, J.J.
Álvarez, V.
Azevedo, C.D.R.
Borges, F.I.G.
Cárcel, S.
Carrión, J.V.
Cebrián, S.
Cervera, A.
Conde, C.A.N.
Díaz, J.
Diesburg, M.
Esteve, R.
Fernandes, L.M.P.
Ferreira, A.L.
Freitas, E.D.C.
Goldschmidt, A.
González-Díaz, D.
Gutiérrez, R.M.
Hauptman, J.
Henriques, C.A.O.
Hernando Morata, J. A.
Herrero, V.
Jones, B.
Labarga, L.
Laing, A.
Lebrun, P.
Liubarsky, I.
López-March, N.
Lorca, D.
Losada, M.
Martín-Albo, J.
Martínez-Lema, G.
Martínez, A.
Monrabal, F.
Monteiro, C.M.B.
Mora, F.J.
Moutinho, L.M.
Nebot-Guinot, M.
Novella, P.
Nygren, D.
Palmeiro, B.
Para, A.
Pérez, J.
Querol, M.
Ripoll, L.
Rodríguez, J.
Santos, F.P.
dos Santos, J.M.F.
Serra, L.
Shuman, D.
Simón, A.
Sofka, C.
Sorel, M.
Toledo, J.F.
Torrent, J.
Tsamalaidze, Z.
Veloso, J.F.C.A.
White, J.
Webb, R.
Yahlali, N.
Yepes-Ramírez, H.
author_sort Renner, J.
collection CERN
description We investigate the potential of using deep learning techniques to reject background events in searches for neutrinoless double beta decay with high pressure xenon time projection chambers capable of detailed track reconstruction. The differences in the topological signatures of background and signal events can be learned by deep neural networks via training over many thousands of events. These networks can then be used to classify further events as signal or background, providing an additional background rejection factor at an acceptable loss of efficiency. The networks trained in this study performed better than previous methods developed based on the use of the same topological signatures by a factor of 1.2 to 1.6, and there is potential for further improvement.
id cern-2217394
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2016
record_format invenio
spelling cern-22173942022-08-10T12:34:42Zdoi:10.1088/1748-0221/12/01/T01004http://cds.cern.ch/record/2217394engRenner, J.Farbin, A.Vidal, J. MuñozBenlloch-Rodríguez, J.M.Botas, A.Ferrario, P.Gómez-Cadenas, J.J.Álvarez, V.Azevedo, C.D.R.Borges, F.I.G.Cárcel, S.Carrión, J.V.Cebrián, S.Cervera, A.Conde, C.A.N.Díaz, J.Diesburg, M.Esteve, R.Fernandes, L.M.P.Ferreira, A.L.Freitas, E.D.C.Goldschmidt, A.González-Díaz, D.Gutiérrez, R.M.Hauptman, J.Henriques, C.A.O.Hernando Morata, J. A.Herrero, V.Jones, B.Labarga, L.Laing, A.Lebrun, P.Liubarsky, I.López-March, N.Lorca, D.Losada, M.Martín-Albo, J.Martínez-Lema, G.Martínez, A.Monrabal, F.Monteiro, C.M.B.Mora, F.J.Moutinho, L.M.Nebot-Guinot, M.Novella, P.Nygren, D.Palmeiro, B.Para, A.Pérez, J.Querol, M.Ripoll, L.Rodríguez, J.Santos, F.P.dos Santos, J.M.F.Serra, L.Shuman, D.Simón, A.Sofka, C.Sorel, M.Toledo, J.F.Torrent, J.Tsamalaidze, Z.Veloso, J.F.C.A.White, J.Webb, R.Yahlali, N.Yepes-Ramírez, H.Background rejection in NEXT using deep neural networkshep-exParticle Physics - Experimentphysics.ins-detDetectors and Experimental TechniquesWe investigate the potential of using deep learning techniques to reject background events in searches for neutrinoless double beta decay with high pressure xenon time projection chambers capable of detailed track reconstruction. The differences in the topological signatures of background and signal events can be learned by deep neural networks via training over many thousands of events. These networks can then be used to classify further events as signal or background, providing an additional background rejection factor at an acceptable loss of efficiency. The networks trained in this study performed better than previous methods developed based on the use of the same topological signatures by a factor of 1.2 to 1.6, and there is potential for further improvement.arXiv:1609.06202FERMILAB-PUB-16-422-CDoai:cds.cern.ch:22173942016-09-20
spellingShingle hep-ex
Particle Physics - Experiment
physics.ins-det
Detectors and Experimental Techniques
Renner, J.
Farbin, A.
Vidal, J. Muñoz
Benlloch-Rodríguez, J.M.
Botas, A.
Ferrario, P.
Gómez-Cadenas, J.J.
Álvarez, V.
Azevedo, C.D.R.
Borges, F.I.G.
Cárcel, S.
Carrión, J.V.
Cebrián, S.
Cervera, A.
Conde, C.A.N.
Díaz, J.
Diesburg, M.
Esteve, R.
Fernandes, L.M.P.
Ferreira, A.L.
Freitas, E.D.C.
Goldschmidt, A.
González-Díaz, D.
Gutiérrez, R.M.
Hauptman, J.
Henriques, C.A.O.
Hernando Morata, J. A.
Herrero, V.
Jones, B.
Labarga, L.
Laing, A.
Lebrun, P.
Liubarsky, I.
López-March, N.
Lorca, D.
Losada, M.
Martín-Albo, J.
Martínez-Lema, G.
Martínez, A.
Monrabal, F.
Monteiro, C.M.B.
Mora, F.J.
Moutinho, L.M.
Nebot-Guinot, M.
Novella, P.
Nygren, D.
Palmeiro, B.
Para, A.
Pérez, J.
Querol, M.
Ripoll, L.
Rodríguez, J.
Santos, F.P.
dos Santos, J.M.F.
Serra, L.
Shuman, D.
Simón, A.
Sofka, C.
Sorel, M.
Toledo, J.F.
Torrent, J.
Tsamalaidze, Z.
Veloso, J.F.C.A.
White, J.
Webb, R.
Yahlali, N.
Yepes-Ramírez, H.
Background rejection in NEXT using deep neural networks
title Background rejection in NEXT using deep neural networks
title_full Background rejection in NEXT using deep neural networks
title_fullStr Background rejection in NEXT using deep neural networks
title_full_unstemmed Background rejection in NEXT using deep neural networks
title_short Background rejection in NEXT using deep neural networks
title_sort background rejection in next using deep neural networks
topic hep-ex
Particle Physics - Experiment
physics.ins-det
Detectors and Experimental Techniques
url https://dx.doi.org/10.1088/1748-0221/12/01/T01004
http://cds.cern.ch/record/2217394
work_keys_str_mv AT rennerj backgroundrejectioninnextusingdeepneuralnetworks
AT farbina backgroundrejectioninnextusingdeepneuralnetworks
AT vidaljmunoz backgroundrejectioninnextusingdeepneuralnetworks
AT benllochrodriguezjm backgroundrejectioninnextusingdeepneuralnetworks
AT botasa backgroundrejectioninnextusingdeepneuralnetworks
AT ferrariop backgroundrejectioninnextusingdeepneuralnetworks
AT gomezcadenasjj backgroundrejectioninnextusingdeepneuralnetworks
AT alvarezv backgroundrejectioninnextusingdeepneuralnetworks
AT azevedocdr backgroundrejectioninnextusingdeepneuralnetworks
AT borgesfig backgroundrejectioninnextusingdeepneuralnetworks
AT carcels backgroundrejectioninnextusingdeepneuralnetworks
AT carrionjv backgroundrejectioninnextusingdeepneuralnetworks
AT cebrians backgroundrejectioninnextusingdeepneuralnetworks
AT cerveraa backgroundrejectioninnextusingdeepneuralnetworks
AT condecan backgroundrejectioninnextusingdeepneuralnetworks
AT diazj backgroundrejectioninnextusingdeepneuralnetworks
AT diesburgm backgroundrejectioninnextusingdeepneuralnetworks
AT estever backgroundrejectioninnextusingdeepneuralnetworks
AT fernandeslmp backgroundrejectioninnextusingdeepneuralnetworks
AT ferreiraal backgroundrejectioninnextusingdeepneuralnetworks
AT freitasedc backgroundrejectioninnextusingdeepneuralnetworks
AT goldschmidta backgroundrejectioninnextusingdeepneuralnetworks
AT gonzalezdiazd backgroundrejectioninnextusingdeepneuralnetworks
AT gutierrezrm backgroundrejectioninnextusingdeepneuralnetworks
AT hauptmanj backgroundrejectioninnextusingdeepneuralnetworks
AT henriquescao backgroundrejectioninnextusingdeepneuralnetworks
AT hernandomorataja backgroundrejectioninnextusingdeepneuralnetworks
AT herrerov backgroundrejectioninnextusingdeepneuralnetworks
AT jonesb backgroundrejectioninnextusingdeepneuralnetworks
AT labargal backgroundrejectioninnextusingdeepneuralnetworks
AT lainga backgroundrejectioninnextusingdeepneuralnetworks
AT lebrunp backgroundrejectioninnextusingdeepneuralnetworks
AT liubarskyi backgroundrejectioninnextusingdeepneuralnetworks
AT lopezmarchn backgroundrejectioninnextusingdeepneuralnetworks
AT lorcad backgroundrejectioninnextusingdeepneuralnetworks
AT losadam backgroundrejectioninnextusingdeepneuralnetworks
AT martinalboj backgroundrejectioninnextusingdeepneuralnetworks
AT martinezlemag backgroundrejectioninnextusingdeepneuralnetworks
AT martineza backgroundrejectioninnextusingdeepneuralnetworks
AT monrabalf backgroundrejectioninnextusingdeepneuralnetworks
AT monteirocmb backgroundrejectioninnextusingdeepneuralnetworks
AT morafj backgroundrejectioninnextusingdeepneuralnetworks
AT moutinholm backgroundrejectioninnextusingdeepneuralnetworks
AT nebotguinotm backgroundrejectioninnextusingdeepneuralnetworks
AT novellap backgroundrejectioninnextusingdeepneuralnetworks
AT nygrend backgroundrejectioninnextusingdeepneuralnetworks
AT palmeirob backgroundrejectioninnextusingdeepneuralnetworks
AT paraa backgroundrejectioninnextusingdeepneuralnetworks
AT perezj backgroundrejectioninnextusingdeepneuralnetworks
AT querolm backgroundrejectioninnextusingdeepneuralnetworks
AT ripolll backgroundrejectioninnextusingdeepneuralnetworks
AT rodriguezj backgroundrejectioninnextusingdeepneuralnetworks
AT santosfp backgroundrejectioninnextusingdeepneuralnetworks
AT dossantosjmf backgroundrejectioninnextusingdeepneuralnetworks
AT serral backgroundrejectioninnextusingdeepneuralnetworks
AT shumand backgroundrejectioninnextusingdeepneuralnetworks
AT simona backgroundrejectioninnextusingdeepneuralnetworks
AT sofkac backgroundrejectioninnextusingdeepneuralnetworks
AT sorelm backgroundrejectioninnextusingdeepneuralnetworks
AT toledojf backgroundrejectioninnextusingdeepneuralnetworks
AT torrentj backgroundrejectioninnextusingdeepneuralnetworks
AT tsamalaidzez backgroundrejectioninnextusingdeepneuralnetworks
AT velosojfca backgroundrejectioninnextusingdeepneuralnetworks
AT whitej backgroundrejectioninnextusingdeepneuralnetworks
AT webbr backgroundrejectioninnextusingdeepneuralnetworks
AT yahlalin backgroundrejectioninnextusingdeepneuralnetworks
AT yepesramirezh backgroundrejectioninnextusingdeepneuralnetworks