Cargando…

Development and Characterization of a Novel Graphite-matrix Composite Material for Thermal Management Applications

The present Master Thesis has been carried out at CERN, the European Organization for Nuclear Research. CERN is located in Geneva (Switzerland), but some facilities cross the Swiss-French border. At CERN the deepest structure and physics of matter are studied with the aid of high energy particle bea...

Descripción completa

Detalles Bibliográficos
Autor principal: Guardia Valenzuela, Jorge
Lenguaje:eng
Publicado: 2016
Materias:
Acceso en línea:http://cds.cern.ch/record/2221106
_version_ 1780952218634027008
author Guardia Valenzuela, Jorge
author_facet Guardia Valenzuela, Jorge
author_sort Guardia Valenzuela, Jorge
collection CERN
description The present Master Thesis has been carried out at CERN, the European Organization for Nuclear Research. CERN is located in Geneva (Switzerland), but some facilities cross the Swiss-French border. At CERN the deepest structure and physics of matter are studied with the aid of high energy particle beams. The beam energy of the world biggest particle accelerator “Large Hadron Collider” (LHC) at CERN is equivalent to that needed for melting one ton of copper in few µs and it is concentrated in a diameter of less than 2mm. Beam control and protection devices, in particular collimators, are required for using these high energy particle beams, and their materials have to withstand one of the hardest man-made environments. This calls for the development of novel advanced materials, as no existing combination of physical, thermal, electrical and mechanical properties withstands the collimators extreme working conditions. Diamond and graphite based composites are the main material families investigated for this application. The research program which is being carried out on these materials at CERN with collaborating partners is mainly focused on the theoretical investigation, manufacturing process, material characterisation and material validation. Besides “High Energy Physics”, these materials are of particular interest for demanding thermal management applications such as high power density electronic packaging, avionics and aerospace systems, nuclear power plants, microwave and radio-frequency devices, turbine engine components, or advanced automotive and aeronautical braking systems. The interest that CERN has to transfer the internally developed knowledge towards society accounts for the motivation of this Master Thesis. The achievements from the materials for “Beam Intercepting Devices” at CERN, led to this Master Thesis research with the aim of designing an outstanding material in thermal management applications and economically viable in the external market. Several graphite-matrix composite materials, which were being developed for collimators, were used as a starting point for this research. They have been used as a reference all along this work. Amongst these composite materials one could also find some made of boron compounds, but those were discarded from the start as boron forms a substitutional solution in graphite which significantly degrades its original thermal and electrical properties. During the course of this Master Thesis, a detailed study of catalytic graphitization was performed. This enabled the selection of the most appropriate compound which would then lead to the formation of a highly oriented and well connected graphite matrix. The survey concluded that nickel was the most appropriate element mainly due to its ability to dissolve, diffuse and precipitate carbon in molten state. Once the composite, named Nickel-Graphite (NiGr), was chosen, its composition and processing were designed. This was followed by its thermo-mechanical, electrical and micro-structural characterization. Finally, two different grades were tested, and one of them showed properties which are very useful for many thermal management applications.
id cern-2221106
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2016
record_format invenio
spelling cern-22211062019-09-30T06:29:59Zhttp://cds.cern.ch/record/2221106engGuardia Valenzuela, JorgeDevelopment and Characterization of a Novel Graphite-matrix Composite Material for Thermal Management ApplicationsEngineeringThe present Master Thesis has been carried out at CERN, the European Organization for Nuclear Research. CERN is located in Geneva (Switzerland), but some facilities cross the Swiss-French border. At CERN the deepest structure and physics of matter are studied with the aid of high energy particle beams. The beam energy of the world biggest particle accelerator “Large Hadron Collider” (LHC) at CERN is equivalent to that needed for melting one ton of copper in few µs and it is concentrated in a diameter of less than 2mm. Beam control and protection devices, in particular collimators, are required for using these high energy particle beams, and their materials have to withstand one of the hardest man-made environments. This calls for the development of novel advanced materials, as no existing combination of physical, thermal, electrical and mechanical properties withstands the collimators extreme working conditions. Diamond and graphite based composites are the main material families investigated for this application. The research program which is being carried out on these materials at CERN with collaborating partners is mainly focused on the theoretical investigation, manufacturing process, material characterisation and material validation. Besides “High Energy Physics”, these materials are of particular interest for demanding thermal management applications such as high power density electronic packaging, avionics and aerospace systems, nuclear power plants, microwave and radio-frequency devices, turbine engine components, or advanced automotive and aeronautical braking systems. The interest that CERN has to transfer the internally developed knowledge towards society accounts for the motivation of this Master Thesis. The achievements from the materials for “Beam Intercepting Devices” at CERN, led to this Master Thesis research with the aim of designing an outstanding material in thermal management applications and economically viable in the external market. Several graphite-matrix composite materials, which were being developed for collimators, were used as a starting point for this research. They have been used as a reference all along this work. Amongst these composite materials one could also find some made of boron compounds, but those were discarded from the start as boron forms a substitutional solution in graphite which significantly degrades its original thermal and electrical properties. During the course of this Master Thesis, a detailed study of catalytic graphitization was performed. This enabled the selection of the most appropriate compound which would then lead to the formation of a highly oriented and well connected graphite matrix. The survey concluded that nickel was the most appropriate element mainly due to its ability to dissolve, diffuse and precipitate carbon in molten state. Once the composite, named Nickel-Graphite (NiGr), was chosen, its composition and processing were designed. This was followed by its thermo-mechanical, electrical and micro-structural characterization. Finally, two different grades were tested, and one of them showed properties which are very useful for many thermal management applications.Este proyecto fin de carrera se ha llevado a cabo en el CERN, la Organización Europea para la Investigación Nuclear. El CERN está ubicado en Ginebra (Suiza), pero algunas instalaciones cruzan la frontera franco-suiza. En el CERN se estudia la estructura más interna y la física de la materia con la ayuda de haces de partículas de alta energía. La energía del haz en el acelerador de partículas más grande del mundo, el “Large Hadron Collider” (LHC) del CERN, es equivalente a la necesaria para fundir una tonelada de cobre en pocos μs y está concentrada en un diámetro de menos de 2mm. Los equipos de control e intercepción del haz, en concreto los colimadores, son necesarios para usar estos haces de alta energía, y sus materiales deben resistir uno de los entornos más duros creados por el hombre. Esto requiere el desarrollo de nuevos materiales avanzados, ya que no hay ninguna combinación de propiedades físicas, térmicas, eléctricas y mecánicas que resista las extremas condiciones de trabajo de los colimadores. Los materiales compuestos basados en diamante o grafito son las principales familias investigadas para esta aplicación. El programa de investigación que se está llevando a cabo en el CERN para estos materiales, que incluye acuerdos de colaboración, está focalizado principalmente en la investigación teórica, el proceso de producción, la caracterización del material y su validación. Además de “física de alta energía”, estos materiales son particularmente interesantes para aplicaciones exigentes de transferencia de calor, como por ejemplo, encapsulado electrónico de alta densidad de potencia, sistemas aeronáuticos y aeroespaciales, centrales nucleares, dispositivos de microondas y radiofrecuencia, componentes de motores a reacción, o sistemas de frenado avanzado para automóviles o aeronaves. El interés que tiene el CERN para transferir el conocimiento internamente desarrollado hacia la sociedad explica la motivación de este proyecto fin de carrera. Los logros obtenidos en los materiales para los equipos de control e intercepción del haz de partículas del CERN, dieron lugar a este PFC con el objetivo de diseñar un material puntero en aplicaciones de transferencia de calor, que fuera económicamente viable en la industria. Al comienzo del trabajo, se estudiaron varios materiales compuestos de matriz grafítica, que estaban en proceso de desarrollo para los colimadores. Éstos han sido el material de referencia para la investigación. Entre ellos, había algunos materiales hechos con compuestos de boro, que se descartaron desde el principio, ya que el boro forma una solución sustitucional en el grafito que disminuye considerablemente sus propiedades térmicas y eléctricas originales. Durante el desarrollo del proyecto, se realizó un estudio detallado del proceso de grafitización catalizada. De esta forma, se podría seleccionar el compuesto más adecuado, que permitiera obtener una matriz grafítica altamente orientada y conexa. Debido, entre otras propiedades, a su habilidad de disolver, difundir y precipitar carbono en estado fundido, la evaluación concluyó que el elemento más apropiado era el níquel. Una vez decidido el compuesto, llamado Níquel-Grafito (NiGr), se diseñó su composición y procesado, siguiendo con la caracterización termo-mecánica, eléctrica y micro-estructural. Finalmente, se pudieron probar dos grados diferentes, uno de los cuales tiene propiedades muy interesantes para ciertas aplicaciones de transferencia de calor.CERN-THESIS-2015-360oai:cds.cern.ch:22211062016-10-03T15:00:22Z
spellingShingle Engineering
Guardia Valenzuela, Jorge
Development and Characterization of a Novel Graphite-matrix Composite Material for Thermal Management Applications
title Development and Characterization of a Novel Graphite-matrix Composite Material for Thermal Management Applications
title_full Development and Characterization of a Novel Graphite-matrix Composite Material for Thermal Management Applications
title_fullStr Development and Characterization of a Novel Graphite-matrix Composite Material for Thermal Management Applications
title_full_unstemmed Development and Characterization of a Novel Graphite-matrix Composite Material for Thermal Management Applications
title_short Development and Characterization of a Novel Graphite-matrix Composite Material for Thermal Management Applications
title_sort development and characterization of a novel graphite-matrix composite material for thermal management applications
topic Engineering
url http://cds.cern.ch/record/2221106
work_keys_str_mv AT guardiavalenzuelajorge developmentandcharacterizationofanovelgraphitematrixcompositematerialforthermalmanagementapplications