Cargando…
Multi-agent machine learning: a reinforcement approach
The book begins with a chapter on traditional methods of supervised learning, covering recursive least squares learning, mean square error methods, and stochastic approximation. Chapter 2 covers single agent reinforcement learning. Topics include learning value functions, Markov games, and TD learn...
Autores principales: | Schwartz, H M, Schwartz, Howard M |
---|---|
Lenguaje: | eng |
Publicado: |
Wiley
2014
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2222509 |
Ejemplares similares
-
Statistical and machine learning approaches for network analysis
por: Dehmer, Matthias, et al.
Publicado: (2012) -
Game-theoretic learning and distributed optimization in memoryless multi-agent systems
por: Tatarenko, Tatiana
Publicado: (2017) -
Machine learning in medicine: cookbook
por: Cleophas, Ton J, et al.
Publicado: (2014) -
Simulation-based optimization: parametric optimization techniques and reinforcement learning
por: Gosavi, Abhijit
Publicado: (2003) -
Continuum deformation of multi-agent systems
por: Rastgoftar, Hossein
Publicado: (2016)