Cargando…
Using LSTM recurrent neural networks for monitoring the LHC superconducting magnets
The superconducting LHC magnets are coupled with an electronic monitoring system which records and analyses voltage time series reflecting their performance. A currently used system is based on a range of preprogrammed triggers which launches protection procedures when a misbehavior of the magnets i...
Autores principales: | Wielgosz, Maciej, Skoczeń, Andrzej, Mertik, Matej |
---|---|
Lenguaje: | eng |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.nima.2017.06.020 http://cds.cern.ch/record/2234465 |
Ejemplares similares
-
Recurrent Neural Networks for anomaly detection in the Post-Mortem time series of LHC superconducting magnets
por: Wielgosz, Maciej, et al.
Publicado: (2017) -
The model of an anomaly detector for HiLumi LHC magnets based on Recurrent Neural Networks and adaptive quantization
por: Wielgosz, Maciej, et al.
Publicado: (2017) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
Ensemble Reservoir Computing for Dynamical Systems: Prediction of Phase-Space Stable Region for Hadron Storage Rings
por: Casanova, Maxime, et al.
Publicado: (2023)