Cargando…

The chemical bond in inorganic chemistry: the bond valence model

The bond valence model is a version of the ionic model in which the chemical constraints are expressed in terms of localized chemical bonds formed by the valence charge of the atoms. Theorems derived from the properties of the electrostatic flux predict the rules obeyed by both ionic and covalent bo...

Descripción completa

Detalles Bibliográficos
Autor principal: Brown, I David
Lenguaje:eng
Publicado: Oxford University Press 2016
Materias:
Acceso en línea:https://dx.doi.org/10.1093/acprof:oso/9780198742951.001.0001
http://cds.cern.ch/record/2237510
Descripción
Sumario:The bond valence model is a version of the ionic model in which the chemical constraints are expressed in terms of localized chemical bonds formed by the valence charge of the atoms. Theorems derived from the properties of the electrostatic flux predict the rules obeyed by both ionic and covalent bonds. They make quantitative predictions of coordination number, crystal structure, bond lengths and bond angles. Bond stability depends on the matching of the bonding strengths of the atoms, while the conflicting requirements of chemistry and space lead to the structural instabilities responsible for the unusual physical properties displayed by some materials. The model has applications in many fields ranging from mineralogy to molecular biology.