Cargando…
Design, Characterization and Test of the Associative Memory Chip AM06 for the Fast TracKer System
We present the performance of the new Associative Memory (AM) chip, designed and manufactured in 65 nm CMOS technology. The AM06 is the 6th version of a highly parallel ASIC processor for pattern recognition in high energy physics experiments. The AM06 is based on the XORAM cell architecture, which...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2239239 |
Sumario: | We present the performance of the new Associative Memory (AM) chip, designed and manufactured in 65 nm CMOS technology. The AM06 is the 6th version of a highly parallel ASIC processor for pattern recognition in high energy physics experiments. The AM06 is based on the XORAM cell architecture, which has been specifically designed to reduce power consumption and control complexity. The AM06 is a large chip, which contains memory banks that store all data of interest. The basic unit is a word of 18 bit. A group of 8 words (each of them related to a detector layer) is called a “pattern”. Each AM06 chip stores 2^17 patterns. The AM06 integrates serializer and deserializer IP blocks (working up to 2.4 GHz), to avoid routing congestion at the board level. AM06 is a complex VLSI chip, designed combining full-custom memory arrays, standard logic cells and IP blocks. It occupies a silicon area of 168 mm^2 and it contains about 421 millions transistors. The AM06 chip is able to perform a synchronous bitwise comparison of about 1 Mbit per second. The parallel input data rate is 100 MHz. Thanks to the XORAM cell and to the design optimization, the AM06 consumes about 1 fJ/bit per comparison. The AM is tailored for on-line track finding in physics experiments; however, it is suitable also for interdisciplinary applications (i.e., general purpose image filtering and analysis). In future we plan to design a more powerful and flexible chip at 28 nm CMOS. |
---|