Cargando…

Development of a Two-Dimensional Tracker with Plasma Panel Detector

Plasma panel sensors are micropattern gaseous radiation detectors which are based on the technology of plasma display panels. This thesis summarizes the research that had been done on commercially available plasma display panels that were converted to plasma panel sensor prototypes and describes the...

Descripción completa

Detalles Bibliográficos
Autor principal: Reikher, David
Lenguaje:eng
Publicado: 2017
Materias:
Acceso en línea:http://cds.cern.ch/record/2240692
Descripción
Sumario:Plasma panel sensors are micropattern gaseous radiation detectors which are based on the technology of plasma display panels. This thesis summarizes the research that had been done on commercially available plasma display panels that were converted to plasma panel sensor prototypes and describes the construction of a two-dimensional tracker consisting of four of those prototypes, with one-dimensional readout on each, used to detect tracks of cosmic muons. A large amount of 2-point as well as 3 and 4-point tracks were detected. Qualitative analyses as well as Pearson’s χ2 tests are performed on the track angular distribution and on a histogram of the linearity measure of 3-point tracks to reject the hypothesis that these tracks result from completely random panel hits. Some RF noise effects contributing to false positives are ruled out, while it is shown that other effects can be ruled out only with a high-intensity minimum ionizing particle source. A significant part of the tracker construction was the development of a software toolbox to acquire and analyze signals coming from plasma panel sensor devices, which enables long-term monitoring of various aspects of the experiment. The software can be used in future tracking experiments and in other scenarios of data acquisition from plasma panel sensor devices. The software architecture and pulse detection algorithm are herein described.