Cargando…
Data-driven remaining useful life prognosis techniques: stochastic models, methods and applications
This book introduces data-driven remaining useful life prognosis techniques, and shows how to utilize the condition monitoring data to predict the remaining useful life of stochastic degrading systems and to schedule maintenance and logistics plans. It is also the first book that describes the basic...
Autores principales: | Si, Xiao-Sheng, Zhang, Zheng-Xin, Hu, Chang-Hua |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2017
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-662-54030-5 http://cds.cern.ch/record/2253851 |
Ejemplares similares
-
Data-driven remaining useful life prediction based on domain adaptation
por: Wen, Bin cheng, et al.
Publicado: (2021) -
Computational Methods in Stochastic Dynamics
por: Papadrakakis, Manolis, et al.
Publicado: (2013) -
Data-Driven Method for Predicting Remaining Useful Life of Bearing Based on Bayesian Theory
por: Gao, Tianhong, et al.
Publicado: (2020) -
Networks of learning automata: techniques for online stochastic optimization
por: Thathachar, M A L, et al.
Publicado: (2004) -
Intelligent fault diagnosis and remaining useful life prediction of rotating machinery
por: Lei, Yaguo
Publicado: (2016)