Cargando…
Periodic feedback stabilization for linear periodic evolution equations
This book introduces a number of recent advances regarding periodic feedback stabilization for linear and time periodic evolution equations. First, it presents selected connections between linear quadratic optimal control theory and feedback stabilization theory for linear periodic evolution equatio...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2016
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-319-49238-4 http://cds.cern.ch/record/2253924 |
_version_ | 1780953594030194688 |
---|---|
author | Wang, Gengsheng Xu, Yashan |
author_facet | Wang, Gengsheng Xu, Yashan |
author_sort | Wang, Gengsheng |
collection | CERN |
description | This book introduces a number of recent advances regarding periodic feedback stabilization for linear and time periodic evolution equations. First, it presents selected connections between linear quadratic optimal control theory and feedback stabilization theory for linear periodic evolution equations. Secondly, it identifies several criteria for the periodic feedback stabilization from the perspective of geometry, algebra and analyses respectively. Next, it describes several ways to design periodic feedback laws. Lastly, the book introduces readers to key methods for designing the control machines. Given its coverage and scope, it offers a helpful guide for graduate students and researchers in the areas of control theory and applied mathematics. |
id | cern-2253924 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2016 |
publisher | Springer |
record_format | invenio |
spelling | cern-22539242021-04-21T19:19:16Zdoi:10.1007/978-3-319-49238-4http://cds.cern.ch/record/2253924engWang, GengshengXu, YashanPeriodic feedback stabilization for linear periodic evolution equationsMathematical Physics and MathematicsThis book introduces a number of recent advances regarding periodic feedback stabilization for linear and time periodic evolution equations. First, it presents selected connections between linear quadratic optimal control theory and feedback stabilization theory for linear periodic evolution equations. Secondly, it identifies several criteria for the periodic feedback stabilization from the perspective of geometry, algebra and analyses respectively. Next, it describes several ways to design periodic feedback laws. Lastly, the book introduces readers to key methods for designing the control machines. Given its coverage and scope, it offers a helpful guide for graduate students and researchers in the areas of control theory and applied mathematics.Springeroai:cds.cern.ch:22539242016 |
spellingShingle | Mathematical Physics and Mathematics Wang, Gengsheng Xu, Yashan Periodic feedback stabilization for linear periodic evolution equations |
title | Periodic feedback stabilization for linear periodic evolution equations |
title_full | Periodic feedback stabilization for linear periodic evolution equations |
title_fullStr | Periodic feedback stabilization for linear periodic evolution equations |
title_full_unstemmed | Periodic feedback stabilization for linear periodic evolution equations |
title_short | Periodic feedback stabilization for linear periodic evolution equations |
title_sort | periodic feedback stabilization for linear periodic evolution equations |
topic | Mathematical Physics and Mathematics |
url | https://dx.doi.org/10.1007/978-3-319-49238-4 http://cds.cern.ch/record/2253924 |
work_keys_str_mv | AT wanggengsheng periodicfeedbackstabilizationforlinearperiodicevolutionequations AT xuyashan periodicfeedbackstabilizationforlinearperiodicevolutionequations |