Cargando…

Multivariate wavelet frames

This book presents a systematic study of multivariate wavelet frames with matrix dilation, in particular, orthogonal and bi-orthogonal bases, which are a special case of frames. Further, it provides algorithmic methods for the construction of dual and tight wavelet frames with a desirable approximat...

Descripción completa

Detalles Bibliográficos
Autores principales: Skopina, Maria, Krivoshein, Aleksandr, Protasov, Vladimir
Lenguaje:eng
Publicado: Springer 2016
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-981-10-3205-9
http://cds.cern.ch/record/2253926
_version_ 1780953594462208000
author Skopina, Maria
Krivoshein, Aleksandr
Protasov, Vladimir
author_facet Skopina, Maria
Krivoshein, Aleksandr
Protasov, Vladimir
author_sort Skopina, Maria
collection CERN
description This book presents a systematic study of multivariate wavelet frames with matrix dilation, in particular, orthogonal and bi-orthogonal bases, which are a special case of frames. Further, it provides algorithmic methods for the construction of dual and tight wavelet frames with a desirable approximation order, namely compactly supported wavelet frames, which are commonly required by engineers. It particularly focuses on methods of constructing them. Wavelet bases and frames are actively used in numerous applications such as audio and graphic signal processing, compression and transmission of information. They are especially useful in image recovery from incomplete observed data due to the redundancy of frame systems. The construction of multivariate wavelet frames, especially bases, with desirable properties remains a challenging problem as although a general scheme of construction is well known, its practical implementation in the multidimensional setting is difficult. Another important feature of wavelet is symmetry. Different kinds of wavelet symmetry are required in various applications, since they preserve linear phase properties and also allow symmetric boundary conditions in wavelet algorithms, which normally deliver better performance. The authors discuss how to provide H-symmetry, where H is an arbitrary symmetry group, for wavelet bases and frames. The book also studies so-called frame-like wavelet systems, which preserve many important properties of frames and can often be used in their place, as well as their approximation properties. The matrix method of computing the regularity of refinable function from the univariate case is extended to multivariate refinement equations with arbitrary dilation matrices. This makes it possible to find the exact values of the Hölder exponent of refinable functions and to make a very refine analysis of their moduli of continuity.
id cern-2253926
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2016
publisher Springer
record_format invenio
spelling cern-22539262021-04-21T19:19:16Zdoi:10.1007/978-981-10-3205-9http://cds.cern.ch/record/2253926engSkopina, MariaKrivoshein, AleksandrProtasov, VladimirMultivariate wavelet framesMathematical Physics and MathematicsThis book presents a systematic study of multivariate wavelet frames with matrix dilation, in particular, orthogonal and bi-orthogonal bases, which are a special case of frames. Further, it provides algorithmic methods for the construction of dual and tight wavelet frames with a desirable approximation order, namely compactly supported wavelet frames, which are commonly required by engineers. It particularly focuses on methods of constructing them. Wavelet bases and frames are actively used in numerous applications such as audio and graphic signal processing, compression and transmission of information. They are especially useful in image recovery from incomplete observed data due to the redundancy of frame systems. The construction of multivariate wavelet frames, especially bases, with desirable properties remains a challenging problem as although a general scheme of construction is well known, its practical implementation in the multidimensional setting is difficult. Another important feature of wavelet is symmetry. Different kinds of wavelet symmetry are required in various applications, since they preserve linear phase properties and also allow symmetric boundary conditions in wavelet algorithms, which normally deliver better performance. The authors discuss how to provide H-symmetry, where H is an arbitrary symmetry group, for wavelet bases and frames. The book also studies so-called frame-like wavelet systems, which preserve many important properties of frames and can often be used in their place, as well as their approximation properties. The matrix method of computing the regularity of refinable function from the univariate case is extended to multivariate refinement equations with arbitrary dilation matrices. This makes it possible to find the exact values of the Hölder exponent of refinable functions and to make a very refine analysis of their moduli of continuity.Springeroai:cds.cern.ch:22539262016
spellingShingle Mathematical Physics and Mathematics
Skopina, Maria
Krivoshein, Aleksandr
Protasov, Vladimir
Multivariate wavelet frames
title Multivariate wavelet frames
title_full Multivariate wavelet frames
title_fullStr Multivariate wavelet frames
title_full_unstemmed Multivariate wavelet frames
title_short Multivariate wavelet frames
title_sort multivariate wavelet frames
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/978-981-10-3205-9
http://cds.cern.ch/record/2253926
work_keys_str_mv AT skopinamaria multivariatewaveletframes
AT krivosheinaleksandr multivariatewaveletframes
AT protasovvladimir multivariatewaveletframes