Cargando…
Cuts from residues: the one-loop case
Using the multivariate residue calculus of Leray, we give a precise definition of the notion of a cut Feynman integral in dimensional regularization, as a residue evaluated on the variety where some of the propagators are put on shell. These are naturally associated to Landau singularities of the fi...
Autores principales: | Abreu, Samuel, Britto, Ruth, Duhr, Claude, Gardi, Einan |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP06(2017)114 http://cds.cern.ch/record/2255657 |
Ejemplares similares
-
Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case
por: Abreu, Samuel, et al.
Publicado: (2017) -
The diagrammatic coaction and the algebraic structure of cut Feynman integrals
por: Abreu, Samuel, et al.
Publicado: (2018) -
The diagrammatic coaction beyond one loop
por: Abreu, Samuel, et al.
Publicado: (2021) -
Diagrammatic Coaction of Two-Loop Feynman Integrals
por: Abreu, Samuel, et al.
Publicado: (2019) -
Coaction for Feynman integrals and diagrams
por: Abreu, Samuel, et al.
Publicado: (2018)