Cargando…

Dispersion relation for hadronic light-by-light scattering: two-pion contributions

In this third paper of a series dedicated to a dispersive treatment of the hadronic light-by-light (HLbL) tensor, we derive a partial-wave formulation for two-pion intermediate states in the HLbL contribution to the anomalous magnetic moment of the muon (g − 2)$_{μ}$ , including a detailed discussio...

Descripción completa

Detalles Bibliográficos
Autores principales: Colangelo, Gilberto, Hoferichter, Martin, Procura, Massimiliano, Stoffer, Peter
Lenguaje:eng
Publicado: 2017
Materias:
Acceso en línea:https://dx.doi.org/10.1007/JHEP04(2017)161
http://cds.cern.ch/record/2255659
Descripción
Sumario:In this third paper of a series dedicated to a dispersive treatment of the hadronic light-by-light (HLbL) tensor, we derive a partial-wave formulation for two-pion intermediate states in the HLbL contribution to the anomalous magnetic moment of the muon (g − 2)$_{μ}$ , including a detailed discussion of the unitarity relation for arbitrary partial waves. We show that obtaining a final expression free from unphysical helicity partial waves is a subtle issue, which we thoroughly clarify. As a by-product, we obtain a set of sum rules that could be used to constrain future calculations of γ$^{∗}$ γ$^{∗}$ → ππ. We validate the formalism extensively using the pion-box contribution, defined by two-pion intermediate states with a pion-pole left-hand cut, and demonstrate how the full known result is reproduced when resumming the partial waves. Using dispersive fits to high-statistics data for the pion vector form factor, we provide an evaluation of the full pion box, a$_{μ}^{π}^{ − box}$  = − 15.9(2) × 10$^{− 11}$. As an application of the partial-wave formalism, we present a first calculation of ππ-rescattering effects in HLbL scattering, with γ$^{∗}$ γ$^{∗}$ → ππ helicity partial waves constructed dispersively using ππ phase shifts derived from the inverse-amplitude method. In this way, the isospin-0 part of our calculation can be interpreted as the contribution of the f$_{0}$(500) to HLbL scattering in (g − 2)$_{μ}$ . We argue that the contribution due to charged-pion rescattering implements corrections related to the corresponding pion polarizability and show that these are moderate. Our final result for the sum of pion-box contribution and its S-wave rescattering corrections reads a$_{μ}^{π}^{ ‐ box}$  + a$_{μ,}_{J = 0}^{ππ}^{,}^{π}^{ ‐ pole LHC}$  = − 24(1) × 10$^{− 11}$.