Cargando…
CERN Radiation Protection (RP) calibration facilities
Radiation protection calibration facilities are essential to ensure the correct operation of radiation protection instrumentation. Calibrations are performed in specific radiation fields according to the type of instrument to be calibrated: neutrons, photons, X-rays, beta and alpha particles. Some o...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2256137 |
_version_ | 1780953723798814720 |
---|---|
author | Pozzi, Fabio |
author_facet | Pozzi, Fabio |
author_sort | Pozzi, Fabio |
collection | CERN |
description | Radiation protection calibration facilities are essential to ensure the correct operation of radiation protection instrumentation. Calibrations are performed in specific radiation fields according to the type of instrument to be calibrated: neutrons, photons, X-rays, beta and alpha particles. Some of the instruments are also tested in mixed radiation fields as often encountered close to high-energy particle accelerators. Moreover, calibration facilities are of great importance to evaluate the performance of prototype detectors; testing and measuring the response of a prototype detector to well-known and -characterized radiation fields contributes to improving and optimizing its design and capabilities. The CERN Radiation Protection group is in charge of performing the regular calibrations of all CERN radiation protection devices; these include operational and passive dosimeters, neutron and photon survey-meters, and fixed radiation detectors to monitor the ambient dose equivalent, H*(10), inside CERN accelerators and at the CERN borders. A new state-of-the-art radiation protection calibration facility was designed, constructed and commissioned following the related ISO recommendations to replace the previous ageing (more than 30 years old) laboratory. In fact, the new laboratory aims also at the official accreditation according to the ISO standards in order to be able to release certified calibrations. Four radiation fields are provided: neutrons, photons and beta sources and an X-ray generator. Its construction did not only involve a pure civil engineering work; many radiation protection studies were performed to provide a facility that could answer the CERN calibration needs and fulfill all related safety requirements. Monte Carlo simulations have been confirmed to be a valuable tool for the optimization of the building design, the radiation protection aspects, e.g. shielding, and, as consequence, the overall cost. After the source and irradiator installation, the facility was commissioned by measuring the calibration quantities of interest, e.g. H*(10), as a function of the source-to-detector distance. In the case of neutron measurements, a comparison with the Monte Carlo results was carried out; in fact, the neutron scattering can be an important issue and the Monte Carlo method can contribute to its estimation and optimization. Neutron calibrations often need to be performed at neutron energies or spectra very much different from those generated by radioactive sources employed in standard calibration laboratories. Unfortunately, fields with a broad neutron spectrum extending to a few GeVs are very rare and the scientific community is calling for worldwide sharing of the existing facilities. The CERN RP group has been managing the CERN-EU high-energy Reference Field (CERF) facility for 20 years, which is a unique calibration field in its kind. CERF is a workplace field that reproduces the neutron spectrum encountered in the vicinity of high-energy accelerators and at commercial flight altitudes. Within the context of providing a well-characterized workplace field to the scientific community, Monte Carlo simulations were performed with the present development version of the FLUKA code. The simulations were compared with experimental measurements showing promising results for the future ISO accreditation of the facility as workplace reference facility. Even though the accreditation process is fairly long, the work achieved so far is setting the bases to start this process in the right way. |
id | cern-2256137 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2017 |
record_format | invenio |
spelling | cern-22561372019-09-30T06:29:59Zhttp://cds.cern.ch/record/2256137engPozzi, FabioCERN Radiation Protection (RP) calibration facilitiesHealth Physics and Radiation EffectsRadiation protection calibration facilities are essential to ensure the correct operation of radiation protection instrumentation. Calibrations are performed in specific radiation fields according to the type of instrument to be calibrated: neutrons, photons, X-rays, beta and alpha particles. Some of the instruments are also tested in mixed radiation fields as often encountered close to high-energy particle accelerators. Moreover, calibration facilities are of great importance to evaluate the performance of prototype detectors; testing and measuring the response of a prototype detector to well-known and -characterized radiation fields contributes to improving and optimizing its design and capabilities. The CERN Radiation Protection group is in charge of performing the regular calibrations of all CERN radiation protection devices; these include operational and passive dosimeters, neutron and photon survey-meters, and fixed radiation detectors to monitor the ambient dose equivalent, H*(10), inside CERN accelerators and at the CERN borders. A new state-of-the-art radiation protection calibration facility was designed, constructed and commissioned following the related ISO recommendations to replace the previous ageing (more than 30 years old) laboratory. In fact, the new laboratory aims also at the official accreditation according to the ISO standards in order to be able to release certified calibrations. Four radiation fields are provided: neutrons, photons and beta sources and an X-ray generator. Its construction did not only involve a pure civil engineering work; many radiation protection studies were performed to provide a facility that could answer the CERN calibration needs and fulfill all related safety requirements. Monte Carlo simulations have been confirmed to be a valuable tool for the optimization of the building design, the radiation protection aspects, e.g. shielding, and, as consequence, the overall cost. After the source and irradiator installation, the facility was commissioned by measuring the calibration quantities of interest, e.g. H*(10), as a function of the source-to-detector distance. In the case of neutron measurements, a comparison with the Monte Carlo results was carried out; in fact, the neutron scattering can be an important issue and the Monte Carlo method can contribute to its estimation and optimization. Neutron calibrations often need to be performed at neutron energies or spectra very much different from those generated by radioactive sources employed in standard calibration laboratories. Unfortunately, fields with a broad neutron spectrum extending to a few GeVs are very rare and the scientific community is calling for worldwide sharing of the existing facilities. The CERN RP group has been managing the CERN-EU high-energy Reference Field (CERF) facility for 20 years, which is a unique calibration field in its kind. CERF is a workplace field that reproduces the neutron spectrum encountered in the vicinity of high-energy accelerators and at commercial flight altitudes. Within the context of providing a well-characterized workplace field to the scientific community, Monte Carlo simulations were performed with the present development version of the FLUKA code. The simulations were compared with experimental measurements showing promising results for the future ISO accreditation of the facility as workplace reference facility. Even though the accreditation process is fairly long, the work achieved so far is setting the bases to start this process in the right way.CERN-THESIS-2015-394oai:cds.cern.ch:22561372017-03-20T10:50:12Z |
spellingShingle | Health Physics and Radiation Effects Pozzi, Fabio CERN Radiation Protection (RP) calibration facilities |
title | CERN Radiation Protection (RP) calibration facilities |
title_full | CERN Radiation Protection (RP) calibration facilities |
title_fullStr | CERN Radiation Protection (RP) calibration facilities |
title_full_unstemmed | CERN Radiation Protection (RP) calibration facilities |
title_short | CERN Radiation Protection (RP) calibration facilities |
title_sort | cern radiation protection (rp) calibration facilities |
topic | Health Physics and Radiation Effects |
url | http://cds.cern.ch/record/2256137 |
work_keys_str_mv | AT pozzifabio cernradiationprotectionrpcalibrationfacilities |