Cargando…
Deep-learning Top Taggers or The End of QCD?
<!--HTML-->https://arxiv.org/abs/1701.08784 Machine learning based on convolutional neural networks can be used to study jet images from the LHC. Top tagging in fat jets offers a well-defined framework to establish our DeepTop approach and compare its performance to QCD-based top taggers. We...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2256799 |
Sumario: | <!--HTML-->https://arxiv.org/abs/1701.08784
Machine learning based on convolutional neural networks can be used to study jet images from the LHC. Top tagging in fat jets offers a well-defined framework to establish our DeepTop approach and compare its performance to QCD-based top taggers. We first optimize a network architecture to identify top quarks in Monte Carlo simulations of the Standard Model production channel. Using standard fat jets we then compare its performance to a multivariate QCD-based top tagger. We find that both approaches lead to comparable performance, establishing convolutional networks as a promising new approach for multivariate hypothesis-based top tagging. |
---|