Cargando…
Application of Generative Adversarial Networks (GANs) to jet images
<!--HTML-->https://arxiv.org/abs/1701.05927 We provide a bridge between generative modeling in the Machine Learning community and simulated physical processes in High Energy Particle Physics by applying a novel Generative Adversarial Network (GAN) architecture to the production of jet images...
Autor principal: | Paganini, Michela |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2256878 |
Ejemplares similares
-
Seminar: Open challenges for improving Generative Adversarial Networks (GANs)
por: Goodfellow, Ian
Publicado: (2017) -
Lund jet images from generative and cycle-consistent adversarial networks
por: Dreyer, Frederic Alexandre
Publicado: (2019) -
Decorrelated Jet Substructure Tagging using Adversarial Neural Networks
por: Shimmin, Chase Owen
Publicado: (2017) -
Adversarial Tuning of Perturbative Parameters in Non-Differentiable Physics Simulators
por: Paganini, Michela
Publicado: (2018) -
Joint Wasserstein GAN contribution
por: Glombitza, Jonas, et al.
Publicado: (2018)