Cargando…
HEP.TrkX [Vidyo]
<!--HTML-->Reconstruction of charged particle tracks is a central task in the processing of physics data at the LHC and other colliders. Current state-of-the-art tracking algorithms are based on the Kalman filter and have seen great success both offline and at trigger level. However, these a...
Autor principal: | Anderson, Dustin James |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2256884 |
Ejemplares similares
-
Top tagging with deep neural networks [Vidyo]
por: Pearkes, Jannicke
Publicado: (2017) -
Inclusive tagging of B-flavour at LHCb [Vidyo]
por: Rogozhnikov, Aleksei
Publicado: (2017) -
Object identification with deep learning using Intel DAAL on Knights Landing processor [Vidyo]
por: Ojika, David Nonso
Publicado: (2017) -
Overview of ML in HEP
por: De Oliveira, Luke Percival
Publicado: (2018) -
ML as a Service for HEP
por: Kuznetsov, Valentin Y
Publicado: (2018)