Cargando…

Jet-hadron correlations relative to the event plane in Pb--Pb collisions at the LHC in ALICE

In relativistic heavy ion collisions at the Large Hadron Collider (LHC), a hot, dense and strongly interacting medium known as the Quark Gluon Plasma (QGP) is produced. Quarks and gluons from incoming nuclei collide to produce partons at high momenta early in the collisions. By fragmenting into co...

Descripción completa

Detalles Bibliográficos
Autor principal: Mazer, Joel
Lenguaje:eng
Publicado: 2017
Materias:
Acceso en línea:http://cds.cern.ch/record/2257086
_version_ 1780953773748781056
author Mazer, Joel
author_facet Mazer, Joel
author_sort Mazer, Joel
collection CERN
description In relativistic heavy ion collisions at the Large Hadron Collider (LHC), a hot, dense and strongly interacting medium known as the Quark Gluon Plasma (QGP) is produced. Quarks and gluons from incoming nuclei collide to produce partons at high momenta early in the collisions. By fragmenting into collimated sprays of hadrons, these partons form 'jets'. Within the framework of perturbative Quantum Chromodynamics (pQCD), jet production is well understood in pp collisions. We can use jets measured in pp interactions as a baseline reference for comparing to heavy ion collision systems to detect and study jet quenching. The jet quenching mechanism can be studied through the angular correlations of trigger jets with charged hadrons and is examined in transverse momentum bins of the trigger jets, transverse momentum bins of the associated hadrons, and studied as a function of collision centrality. A highly robust and precise background subtraction method is used in this analysis to remove the complex, flow dominated, heavy ion background. The analysis of angular correlations for different orientations of the trigger jet relative to the event plane allows for the study of the path length dependence of medium modifications to jets. The event plane dependence of azimuthal angular correlations of charged hadrons with respect to the axis of an R=0.2 reconstructed 'trigger' full (charged + neutral) jet in Pb--Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV in ALICE will be discussed. Results will be compared for three angular bins of the trigger jet relative to the event plane in mid-peripheral events. The status of jet yields and widths relative to the event plane will be discussed. There is no significant event plane dependence within the current uncertainties. Path length dependence of energy loss is seen to be a secondary effect to statistical fluctuations and in-medium energy loss mechanisms.
id cern-2257086
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2017
record_format invenio
spelling cern-22570862019-09-30T06:29:59Zhttp://cds.cern.ch/record/2257086engMazer, JoelJet-hadron correlations relative to the event plane in Pb--Pb collisions at the LHC in ALICENuclear Physics - ExperimentParticle Physics - ExperimentIn relativistic heavy ion collisions at the Large Hadron Collider (LHC), a hot, dense and strongly interacting medium known as the Quark Gluon Plasma (QGP) is produced. Quarks and gluons from incoming nuclei collide to produce partons at high momenta early in the collisions. By fragmenting into collimated sprays of hadrons, these partons form 'jets'. Within the framework of perturbative Quantum Chromodynamics (pQCD), jet production is well understood in pp collisions. We can use jets measured in pp interactions as a baseline reference for comparing to heavy ion collision systems to detect and study jet quenching. The jet quenching mechanism can be studied through the angular correlations of trigger jets with charged hadrons and is examined in transverse momentum bins of the trigger jets, transverse momentum bins of the associated hadrons, and studied as a function of collision centrality. A highly robust and precise background subtraction method is used in this analysis to remove the complex, flow dominated, heavy ion background. The analysis of angular correlations for different orientations of the trigger jet relative to the event plane allows for the study of the path length dependence of medium modifications to jets. The event plane dependence of azimuthal angular correlations of charged hadrons with respect to the axis of an R=0.2 reconstructed 'trigger' full (charged + neutral) jet in Pb--Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV in ALICE will be discussed. Results will be compared for three angular bins of the trigger jet relative to the event plane in mid-peripheral events. The status of jet yields and widths relative to the event plane will be discussed. There is no significant event plane dependence within the current uncertainties. Path length dependence of energy loss is seen to be a secondary effect to statistical fluctuations and in-medium energy loss mechanisms.CERN-THESIS-2017-020oai:cds.cern.ch:22570862017-03-27T00:00:38Z
spellingShingle Nuclear Physics - Experiment
Particle Physics - Experiment
Mazer, Joel
Jet-hadron correlations relative to the event plane in Pb--Pb collisions at the LHC in ALICE
title Jet-hadron correlations relative to the event plane in Pb--Pb collisions at the LHC in ALICE
title_full Jet-hadron correlations relative to the event plane in Pb--Pb collisions at the LHC in ALICE
title_fullStr Jet-hadron correlations relative to the event plane in Pb--Pb collisions at the LHC in ALICE
title_full_unstemmed Jet-hadron correlations relative to the event plane in Pb--Pb collisions at the LHC in ALICE
title_short Jet-hadron correlations relative to the event plane in Pb--Pb collisions at the LHC in ALICE
title_sort jet-hadron correlations relative to the event plane in pb--pb collisions at the lhc in alice
topic Nuclear Physics - Experiment
Particle Physics - Experiment
url http://cds.cern.ch/record/2257086
work_keys_str_mv AT mazerjoel jethadroncorrelationsrelativetotheeventplaneinpbpbcollisionsatthelhcinalice