Cargando…

pySecDec: a toolbox for the numerical evaluation of multi-scale integrals

We present py SecDec , a new version of the program SecDec , which performs the factorization of dimensionally regulated poles in parametric integrals, and the subsequent numerical evaluation of the finite coefficients. The algebraic part of the program is now written in the form of python modules,...

Descripción completa

Detalles Bibliográficos
Autores principales: Borowka, S., Heinrich, G., Jahn, S., Jones, S.P., Kerner, M., Schlenk, J., Zirke, T.
Lenguaje:eng
Publicado: 2017
Materias:
Acceso en línea:https://dx.doi.org/10.1016/j.cpc.2017.09.015
http://cds.cern.ch/record/2257527
_version_ 1780953798187941888
author Borowka, S.
Heinrich, G.
Jahn, S.
Jones, S.P.
Kerner, M.
Schlenk, J.
Zirke, T.
author_facet Borowka, S.
Heinrich, G.
Jahn, S.
Jones, S.P.
Kerner, M.
Schlenk, J.
Zirke, T.
author_sort Borowka, S.
collection CERN
description We present py SecDec , a new version of the program SecDec , which performs the factorization of dimensionally regulated poles in parametric integrals, and the subsequent numerical evaluation of the finite coefficients. The algebraic part of the program is now written in the form of python modules, which allow a very flexible usage. The optimization of the C++ code, generated using FORM , is improved, leading to a faster numerical convergence. The new version also creates a library of the integrand functions, such that it can be linked to user-specific codes for the evaluation of matrix elements in a way similar to analytic integral libraries.
id cern-2257527
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2017
record_format invenio
spelling cern-22575272021-09-16T11:31:28Zdoi:10.1016/j.cpc.2017.09.015http://cds.cern.ch/record/2257527engBorowka, S.Heinrich, G.Jahn, S.Jones, S.P.Kerner, M.Schlenk, J.Zirke, T.pySecDec: a toolbox for the numerical evaluation of multi-scale integralshep-phParticle Physics - PhenomenologyWe present py SecDec , a new version of the program SecDec , which performs the factorization of dimensionally regulated poles in parametric integrals, and the subsequent numerical evaluation of the finite coefficients. The algebraic part of the program is now written in the form of python modules, which allow a very flexible usage. The optimization of the C++ code, generated using FORM , is improved, leading to a faster numerical convergence. The new version also creates a library of the integrand functions, such that it can be linked to user-specific codes for the evaluation of matrix elements in a way similar to analytic integral libraries.We present pySecDec, a new version of the program SecDec, which performs the factorisation of dimensionally regulated poles in parametric integrals, and the subsequent numerical evaluation of the finite coefficients. The algebraic part of the program is now written in the form of python modules, which allow a very flexible usage. The optimization of the C++ code, generated using FORM, is improved, leading to a faster numerical convergence. The new version also creates a library of the integrand functions, such that it can be linked to user-specific codes for the evaluation of matrix elements in a way similar to analytic integral libraries.MPP-2017-42CERN-TH-2017-063IPPP-17-24arXiv:1703.09692oai:cds.cern.ch:22575272017-03-28
spellingShingle hep-ph
Particle Physics - Phenomenology
Borowka, S.
Heinrich, G.
Jahn, S.
Jones, S.P.
Kerner, M.
Schlenk, J.
Zirke, T.
pySecDec: a toolbox for the numerical evaluation of multi-scale integrals
title pySecDec: a toolbox for the numerical evaluation of multi-scale integrals
title_full pySecDec: a toolbox for the numerical evaluation of multi-scale integrals
title_fullStr pySecDec: a toolbox for the numerical evaluation of multi-scale integrals
title_full_unstemmed pySecDec: a toolbox for the numerical evaluation of multi-scale integrals
title_short pySecDec: a toolbox for the numerical evaluation of multi-scale integrals
title_sort pysecdec: a toolbox for the numerical evaluation of multi-scale integrals
topic hep-ph
Particle Physics - Phenomenology
url https://dx.doi.org/10.1016/j.cpc.2017.09.015
http://cds.cern.ch/record/2257527
work_keys_str_mv AT borowkas pysecdecatoolboxforthenumericalevaluationofmultiscaleintegrals
AT heinrichg pysecdecatoolboxforthenumericalevaluationofmultiscaleintegrals
AT jahns pysecdecatoolboxforthenumericalevaluationofmultiscaleintegrals
AT jonessp pysecdecatoolboxforthenumericalevaluationofmultiscaleintegrals
AT kernerm pysecdecatoolboxforthenumericalevaluationofmultiscaleintegrals
AT schlenkj pysecdecatoolboxforthenumericalevaluationofmultiscaleintegrals
AT zirket pysecdecatoolboxforthenumericalevaluationofmultiscaleintegrals