Cargando…
The SAMPL5 challenge for embedded-cluster integral equation theory: solvation free energies, aqueous p$K_a$, and cyclohexane–water log D
We predict cyclohexane–water distribution coefficients (log D7.4) for drug-like molecules taken from the SAMPL5 blind prediction challenge by the “embedded cluster reference interaction site model” (EC-RISM) integral equation theory. This task involves the coupled problem of predicting both partitio...
Autores principales: | , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/s10822-016-9939-7 http://cds.cern.ch/record/2258358 |
_version_ | 1780953843860766720 |
---|---|
author | Tielker, Nicolas Tomazic, Daniel Heil, Jochen Kloss, Thomas Ehrhart, Sebastian Güssregen, Stefan Schmidt, K. Friedemann Kast, Stefan M. |
author_facet | Tielker, Nicolas Tomazic, Daniel Heil, Jochen Kloss, Thomas Ehrhart, Sebastian Güssregen, Stefan Schmidt, K. Friedemann Kast, Stefan M. |
author_sort | Tielker, Nicolas |
collection | CERN |
description | We predict cyclohexane–water distribution coefficients (log D7.4) for drug-like molecules taken from the SAMPL5 blind prediction challenge by the “embedded cluster reference interaction site model” (EC-RISM) integral equation theory. This task involves the coupled problem of predicting both partition coefficients (log P) of neutral species between the solvents and aqueous acidity constants (pKa) in order to account for a change of protonation states. The first issue is addressed by calibrating an EC-RISM-based model for solvation free energies derived from the “Minnesota Solvation Database” (MNSOL) for both water and cyclohexane utilizing a correction based on the partial molar volume, yielding a root mean square error (RMSE) of 2.4 kcal mol−1 for water and 0.8–0.9 kcal mol−1 for cyclohexane depending on the parametrization. The second one is treated by employing on one hand an empirical pKa model (MoKa) and, on the other hand, an EC-RISM-derived regression of published acidity constants (RMSE of 1.5 for a single model covering acids and bases). In total, at most 8 adjustable parameters are necessary (2–3 for each solvent and two for the pKa) for training solvation and acidity models. Applying the final models to the log D7.4 dataset corresponds to evaluating an independent test set comprising other, composite observables, yielding, for different cyclohexane parametrizations, 2.0–2.1 for the RMSE with the first and 2.2–2.8 with the combined first and second SAMPL5 data set batches. Notably, a pure log P model (assuming neutral species only) performs statistically similarly for these particular compounds. The nature of the approximations and possible perspectives for future developments are discussed. |
id | cern-2258358 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2016 |
record_format | invenio |
spelling | cern-22583582019-09-30T06:29:59Zdoi:10.1007/s10822-016-9939-7http://cds.cern.ch/record/2258358engTielker, NicolasTomazic, DanielHeil, JochenKloss, ThomasEhrhart, SebastianGüssregen, StefanSchmidt, K. FriedemannKast, Stefan M.The SAMPL5 challenge for embedded-cluster integral equation theory: solvation free energies, aqueous p$K_a$, and cyclohexane–water log DChemical Physics and ChemistryWe predict cyclohexane–water distribution coefficients (log D7.4) for drug-like molecules taken from the SAMPL5 blind prediction challenge by the “embedded cluster reference interaction site model” (EC-RISM) integral equation theory. This task involves the coupled problem of predicting both partition coefficients (log P) of neutral species between the solvents and aqueous acidity constants (pKa) in order to account for a change of protonation states. The first issue is addressed by calibrating an EC-RISM-based model for solvation free energies derived from the “Minnesota Solvation Database” (MNSOL) for both water and cyclohexane utilizing a correction based on the partial molar volume, yielding a root mean square error (RMSE) of 2.4 kcal mol−1 for water and 0.8–0.9 kcal mol−1 for cyclohexane depending on the parametrization. The second one is treated by employing on one hand an empirical pKa model (MoKa) and, on the other hand, an EC-RISM-derived regression of published acidity constants (RMSE of 1.5 for a single model covering acids and bases). In total, at most 8 adjustable parameters are necessary (2–3 for each solvent and two for the pKa) for training solvation and acidity models. Applying the final models to the log D7.4 dataset corresponds to evaluating an independent test set comprising other, composite observables, yielding, for different cyclohexane parametrizations, 2.0–2.1 for the RMSE with the first and 2.2–2.8 with the combined first and second SAMPL5 data set batches. Notably, a pure log P model (assuming neutral species only) performs statistically similarly for these particular compounds. The nature of the approximations and possible perspectives for future developments are discussed.oai:cds.cern.ch:22583582016 |
spellingShingle | Chemical Physics and Chemistry Tielker, Nicolas Tomazic, Daniel Heil, Jochen Kloss, Thomas Ehrhart, Sebastian Güssregen, Stefan Schmidt, K. Friedemann Kast, Stefan M. The SAMPL5 challenge for embedded-cluster integral equation theory: solvation free energies, aqueous p$K_a$, and cyclohexane–water log D |
title | The SAMPL5 challenge for embedded-cluster integral equation theory: solvation free energies, aqueous p$K_a$, and cyclohexane–water log D |
title_full | The SAMPL5 challenge for embedded-cluster integral equation theory: solvation free energies, aqueous p$K_a$, and cyclohexane–water log D |
title_fullStr | The SAMPL5 challenge for embedded-cluster integral equation theory: solvation free energies, aqueous p$K_a$, and cyclohexane–water log D |
title_full_unstemmed | The SAMPL5 challenge for embedded-cluster integral equation theory: solvation free energies, aqueous p$K_a$, and cyclohexane–water log D |
title_short | The SAMPL5 challenge for embedded-cluster integral equation theory: solvation free energies, aqueous p$K_a$, and cyclohexane–water log D |
title_sort | sampl5 challenge for embedded-cluster integral equation theory: solvation free energies, aqueous p$k_a$, and cyclohexane–water log d |
topic | Chemical Physics and Chemistry |
url | https://dx.doi.org/10.1007/s10822-016-9939-7 http://cds.cern.ch/record/2258358 |
work_keys_str_mv | AT tielkernicolas thesampl5challengeforembeddedclusterintegralequationtheorysolvationfreeenergiesaqueouspkaandcyclohexanewaterlogd AT tomazicdaniel thesampl5challengeforembeddedclusterintegralequationtheorysolvationfreeenergiesaqueouspkaandcyclohexanewaterlogd AT heiljochen thesampl5challengeforembeddedclusterintegralequationtheorysolvationfreeenergiesaqueouspkaandcyclohexanewaterlogd AT klossthomas thesampl5challengeforembeddedclusterintegralequationtheorysolvationfreeenergiesaqueouspkaandcyclohexanewaterlogd AT ehrhartsebastian thesampl5challengeforembeddedclusterintegralequationtheorysolvationfreeenergiesaqueouspkaandcyclohexanewaterlogd AT gussregenstefan thesampl5challengeforembeddedclusterintegralequationtheorysolvationfreeenergiesaqueouspkaandcyclohexanewaterlogd AT schmidtkfriedemann thesampl5challengeforembeddedclusterintegralequationtheorysolvationfreeenergiesaqueouspkaandcyclohexanewaterlogd AT kaststefanm thesampl5challengeforembeddedclusterintegralequationtheorysolvationfreeenergiesaqueouspkaandcyclohexanewaterlogd AT tielkernicolas sampl5challengeforembeddedclusterintegralequationtheorysolvationfreeenergiesaqueouspkaandcyclohexanewaterlogd AT tomazicdaniel sampl5challengeforembeddedclusterintegralequationtheorysolvationfreeenergiesaqueouspkaandcyclohexanewaterlogd AT heiljochen sampl5challengeforembeddedclusterintegralequationtheorysolvationfreeenergiesaqueouspkaandcyclohexanewaterlogd AT klossthomas sampl5challengeforembeddedclusterintegralequationtheorysolvationfreeenergiesaqueouspkaandcyclohexanewaterlogd AT ehrhartsebastian sampl5challengeforembeddedclusterintegralequationtheorysolvationfreeenergiesaqueouspkaandcyclohexanewaterlogd AT gussregenstefan sampl5challengeforembeddedclusterintegralequationtheorysolvationfreeenergiesaqueouspkaandcyclohexanewaterlogd AT schmidtkfriedemann sampl5challengeforembeddedclusterintegralequationtheorysolvationfreeenergiesaqueouspkaandcyclohexanewaterlogd AT kaststefanm sampl5challengeforembeddedclusterintegralequationtheorysolvationfreeenergiesaqueouspkaandcyclohexanewaterlogd |