Cargando…
Searches for Sub-TeV Hadronic Resonances with the ATLAS Detector
The Large Hadron Collider has recently began colliding proton beams at a record center-of-mass energy $\sqrt{s}=13~\TeV$. This allows the LHC experiments to drastically improve searches for heavy new particles. However at the same time, the more complicated environment means an increase in the trigg...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2258823 |
_version_ | 1780953909246820352 |
---|---|
author | Krizka, Karol |
author_facet | Krizka, Karol |
author_sort | Krizka, Karol |
collection | CERN |
description | The Large Hadron Collider has recently began colliding proton beams at a record center-of-mass energy $\sqrt{s}=13~\TeV$. This allows the LHC experiments to drastically improve searches for heavy new particles. However at the same time, the more complicated environment means an increase in the trigger thresholds. Consequently a viable set of theories at lower energies remains unexplored. This thesis describes three ATLAS analyses that used different techniques to target new particles with sub-TeV mass. The first analysis searches for the Higgs boson produced via vector-boson fusion and decaying to two bottom quarks in in $\sqrt{s}=8~\TeV$ dataset. The presence of the extra jets from vector-boson fusion and $b$-tagging is used to reduce the event rate to a manageable level. The second analysis searches for generic resonances decaying to two $b$-quarks with masses between $600~\GeV$ to $1.2~\TeV$. The use of $b$-tagging in the trigger allows it to set unique limits in the sub-TeV mass range. The third analysis searches for hadronic resonances produced in associtaion with energetic initial state radiation (ISR). The use of the ISR as a trigger decorrelates the resonance mass from the trigger efficiency. The result is world-class limits on new particles with masses between $200~\GeV$ to $500~\GeV$. This space is interesting for particles mediating between the Standard Model and the dark sector. The dark matter relic density prefers $\order{100~\GeV}$ mediators, yet the most stringent constraints in this region previously came from the pre-LHC era. |
id | cern-2258823 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2017 |
record_format | invenio |
spelling | cern-22588232019-09-30T06:29:59Zhttp://cds.cern.ch/record/2258823engKrizka, KarolSearches for Sub-TeV Hadronic Resonances with the ATLAS DetectorParticle Physics - ExperimentThe Large Hadron Collider has recently began colliding proton beams at a record center-of-mass energy $\sqrt{s}=13~\TeV$. This allows the LHC experiments to drastically improve searches for heavy new particles. However at the same time, the more complicated environment means an increase in the trigger thresholds. Consequently a viable set of theories at lower energies remains unexplored. This thesis describes three ATLAS analyses that used different techniques to target new particles with sub-TeV mass. The first analysis searches for the Higgs boson produced via vector-boson fusion and decaying to two bottom quarks in in $\sqrt{s}=8~\TeV$ dataset. The presence of the extra jets from vector-boson fusion and $b$-tagging is used to reduce the event rate to a manageable level. The second analysis searches for generic resonances decaying to two $b$-quarks with masses between $600~\GeV$ to $1.2~\TeV$. The use of $b$-tagging in the trigger allows it to set unique limits in the sub-TeV mass range. The third analysis searches for hadronic resonances produced in associtaion with energetic initial state radiation (ISR). The use of the ISR as a trigger decorrelates the resonance mass from the trigger efficiency. The result is world-class limits on new particles with masses between $200~\GeV$ to $500~\GeV$. This space is interesting for particles mediating between the Standard Model and the dark sector. The dark matter relic density prefers $\order{100~\GeV}$ mediators, yet the most stringent constraints in this region previously came from the pre-LHC era.CERN-THESIS-2017-023oai:cds.cern.ch:22588232017-04-06T17:01:34Z |
spellingShingle | Particle Physics - Experiment Krizka, Karol Searches for Sub-TeV Hadronic Resonances with the ATLAS Detector |
title | Searches for Sub-TeV Hadronic Resonances with the ATLAS Detector |
title_full | Searches for Sub-TeV Hadronic Resonances with the ATLAS Detector |
title_fullStr | Searches for Sub-TeV Hadronic Resonances with the ATLAS Detector |
title_full_unstemmed | Searches for Sub-TeV Hadronic Resonances with the ATLAS Detector |
title_short | Searches for Sub-TeV Hadronic Resonances with the ATLAS Detector |
title_sort | searches for sub-tev hadronic resonances with the atlas detector |
topic | Particle Physics - Experiment |
url | http://cds.cern.ch/record/2258823 |
work_keys_str_mv | AT krizkakarol searchesforsubtevhadronicresonanceswiththeatlasdetector |