Cargando…
The algebraic structure of cut Feynman integrals and the diagrammatic coaction
We study the algebraic and analytic structure of Feynman integrals by proposing an operation that maps an integral into pairs of integrals obtained from a master integrand and a corresponding master contour. This operation is a coaction. It reduces to the known coaction on multiple polylogarithms, b...
Autores principales: | Abreu, Samuel, Britto, Ruth, Duhr, Claude, Gardi, Einan |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevLett.119.051601 http://cds.cern.ch/record/2259330 |
Ejemplares similares
-
From positive geometries to a coaction on hypergeometric functions
por: Abreu, Samuel, et al.
Publicado: (2019) -
The diagrammatic coaction and the algebraic structure of cut Feynman integrals
por: Abreu, Samuel, et al.
Publicado: (2018) -
A heuristic study of the distribution of primes in short and not-so-short intervals
por: Sanchis-Lozano, Miguel-Angel
Publicado: (2018) -
Clean single-valued polylogarithms
por: Charlton, Steven, et al.
Publicado: (2021) -
Multiple D3-instantons and mock modular forms I
por: Alexandrov, Sergei, et al.
Publicado: (2016)