Cargando…
Recurrent Neural Networks for anomaly detection in the Post-Mortem time series of LHC superconducting magnets
This paper presents a model based on Deep Learning algorithms of LSTM and GRU for facilitating an anomaly detection in Large Hadron Collider superconducting magnets. We used high resolution data available in Post Mortem database to train a set of models and chose the best possible set of their hyper...
Autores principales: | Wielgosz, Maciej, Skoczeń, Andrzej, Mertik, Matej |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2260346 |
Ejemplares similares
-
Using LSTM recurrent neural networks for monitoring the LHC superconducting magnets
por: Wielgosz, Maciej, et al.
Publicado: (2016) -
The model of an anomaly detector for HiLumi LHC magnets based on Recurrent Neural Networks and adaptive quantization
por: Wielgosz, Maciej, et al.
Publicado: (2017) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
Ensemble Reservoir Computing for Dynamical Systems: Prediction of Phase-Space Stable Region for Hadron Storage Rings
por: Casanova, Maxime, et al.
Publicado: (2023)