Cargando…
Machine learning and parallelism in the reconstruction of LHCb and its upgrade
After a highly successful first data taking period at the LHC, the LHCb experiment developed a new trigger strategy with a real-time reconstruction, alignment and calibration for Run II. This strategy relies on offline-like track reconstruction in the high level trigger, making a separate offline ev...
Autor principal: | Stahl, Marian |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/898/4/042042 http://cds.cern.ch/record/2260684 |
Ejemplares similares
-
The LHCb Upgrade
por: Eklund, Lars
Publicado: (2017) -
The LHCb upgrade I
por: Aaij, Roel, et al.
Publicado: (2023) -
LHCb VELO Upgrade
por: Hennessy, Karol
Publicado: (2016) -
Machine Learning for the LHCb Simulation
por: Anderlini, Lucio
Publicado: (2021) -
A fast and efficient SIMD track reconstruction algorithm for the LHCb Upgrade 1 VELO-PIX detector
por: Hennequin, Arthur, et al.
Publicado: (2019)