Cargando…
Modeling NNLO jet corrections with neural networks
We present a preliminary strategy for modeling multidimensional distributions through neural networks. We study the efficiency of the proposed strategy by considering as input data the two-dimensional next-to-next leading order (NNLO) jet k-factors distribution for the ATLAS 7 TeV 2011 data. We then...
Autor principal: | Carrazza, Stefano |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.5506/APhysPolB.48.947 http://cds.cern.ch/record/2261144 |
Ejemplares similares
-
NNLO QCD Corrections to W+jet Production in NNLOJET
por: Gehrmann-De Ridder, Aude, et al.
Publicado: (2018) -
NNLO QCD corrections in full colour for jet production observables at the LHC
por: Chen, X., et al.
Publicado: (2022) -
NNLO interpolation grids for jet production at the LHC
por: Britzger, D., et al.
Publicado: (2022) -
NNLO QCD Corrections for Higgs-plus-jet Production in the Four-lepton Decay Mode
por: Chen, Xuan, et al.
Publicado: (2019) -
Isolated photon and photon+jet production at NNLO QCD accuracy
por: Chen, Xuan, et al.
Publicado: (2019)