Cargando…
Introduction to nonlinear science
One of the most unexpected results in science in recent years is that quite ordinary systems obeying simple laws can give rise to complex, nonlinear or chaotic, behavior. In this book, the author presents a unified treatment of the concepts and tools needed to analyze nonlinear phenomena and to outl...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
Cambridge University Press
1995
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2261376 |
_version_ | 1780954055558823936 |
---|---|
author | Nicolis, G |
author_facet | Nicolis, G |
author_sort | Nicolis, G |
collection | CERN |
description | One of the most unexpected results in science in recent years is that quite ordinary systems obeying simple laws can give rise to complex, nonlinear or chaotic, behavior. In this book, the author presents a unified treatment of the concepts and tools needed to analyze nonlinear phenomena and to outline some representative applications drawn from the physical, engineering, and biological sciences. Some of the interesting topics covered include: dynamical systems with a finite number of degrees of freedom, linear stability analysis of fixed points, nonlinear behavior of fixed points, bifurcation analysis, spatially distributed systems, broken symmetries, pattern formation, and chaotic dynamics. The author makes a special effort to provide a logical connection between ordinary dynamical systems and spatially extended systems, and to balance the emphasis on chaotic behavior and more classical nonlinear behavior. He also develops a statistical approach to complex systems and compares it to traditional deterministic phase space descriptions. This book is suitable for senior undergraduate and graduate students taking nonlinear courses from many different perspectives including physics, chemistry, biology, and engineering. |
id | cern-2261376 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 1995 |
publisher | Cambridge University Press |
record_format | invenio |
spelling | cern-22613762021-04-21T19:15:48Zhttp://cds.cern.ch/record/2261376engNicolis, GIntroduction to nonlinear scienceNonlinear SystemsOne of the most unexpected results in science in recent years is that quite ordinary systems obeying simple laws can give rise to complex, nonlinear or chaotic, behavior. In this book, the author presents a unified treatment of the concepts and tools needed to analyze nonlinear phenomena and to outline some representative applications drawn from the physical, engineering, and biological sciences. Some of the interesting topics covered include: dynamical systems with a finite number of degrees of freedom, linear stability analysis of fixed points, nonlinear behavior of fixed points, bifurcation analysis, spatially distributed systems, broken symmetries, pattern formation, and chaotic dynamics. The author makes a special effort to provide a logical connection between ordinary dynamical systems and spatially extended systems, and to balance the emphasis on chaotic behavior and more classical nonlinear behavior. He also develops a statistical approach to complex systems and compares it to traditional deterministic phase space descriptions. This book is suitable for senior undergraduate and graduate students taking nonlinear courses from many different perspectives including physics, chemistry, biology, and engineering.Cambridge University Pressoai:cds.cern.ch:22613761995 |
spellingShingle | Nonlinear Systems Nicolis, G Introduction to nonlinear science |
title | Introduction to nonlinear science |
title_full | Introduction to nonlinear science |
title_fullStr | Introduction to nonlinear science |
title_full_unstemmed | Introduction to nonlinear science |
title_short | Introduction to nonlinear science |
title_sort | introduction to nonlinear science |
topic | Nonlinear Systems |
url | http://cds.cern.ch/record/2261376 |
work_keys_str_mv | AT nicolisg introductiontononlinearscience |