Cargando…

Generalized W-algebras and integrable hierarchies

We report on generalizations of the KdV-type integrable hierarchies of Drinfel'd and Sokolov. These hierarchies lead to the existence of new classical $W$-algebras, which arise as the second Hamiltonian structure of the hierarchies. In particular, we present a construction of the $W_n^{(l)}$ al...

Descripción completa

Detalles Bibliográficos
Autores principales: Burroughs, Nigel, De Groot, Mark, Hollowood, Timothy J., Miramontes, Luis
Lenguaje:eng
Publicado: 1991
Materias:
Acceso en línea:https://dx.doi.org/10.1016/0370-2693(92)90962-4
http://cds.cern.ch/record/226300
_version_ 1780883709929455616
author Burroughs, Nigel
De Groot, Mark
Hollowood, Timothy J.
Miramontes, Luis
author_facet Burroughs, Nigel
De Groot, Mark
Hollowood, Timothy J.
Miramontes, Luis
author_sort Burroughs, Nigel
collection CERN
description We report on generalizations of the KdV-type integrable hierarchies of Drinfel'd and Sokolov. These hierarchies lead to the existence of new classical $W$-algebras, which arise as the second Hamiltonian structure of the hierarchies. In particular, we present a construction of the $W_n^{(l)}$ algebras.
id cern-226300
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 1991
record_format invenio
spelling cern-2263002023-03-12T05:44:33Zdoi:10.1016/0370-2693(92)90962-4http://cds.cern.ch/record/226300engBurroughs, NigelDe Groot, MarkHollowood, Timothy J.Miramontes, LuisGeneralized W-algebras and integrable hierarchiesGeneral Theoretical PhysicsWe report on generalizations of the KdV-type integrable hierarchies of Drinfel'd and Sokolov. These hierarchies lead to the existence of new classical $W$-algebras, which arise as the second Hamiltonian structure of the hierarchies. In particular, we present a construction of the $W_n^{(l)}$ algebras.We report on generalizations of the KdV-type integrable hierarchies of Drinfel'd and Sokolov. These hierarchies lead to the existence of new classical $W$-algebras, which arise as the second Hamiltonian structure of the hierarchies. In particular, we present a construction of the $W_n~{(l)}$ algebras.We report on generalizations of the KdV-type integrable hierarchies of Drinfel'd and Sokolov. These hierarchies lead to the existence of new classical W-algebras, which arise as the second hamiltonian structure of the hierarchies. In particular, we present a construction of the W n (l) -algebras.hep-th/9110024IASSNS-HEP-91-61PUPT-1285IASSNS-HEP-91-61PUPT-1285oai:cds.cern.ch:2263001991-10-08
spellingShingle General Theoretical Physics
Burroughs, Nigel
De Groot, Mark
Hollowood, Timothy J.
Miramontes, Luis
Generalized W-algebras and integrable hierarchies
title Generalized W-algebras and integrable hierarchies
title_full Generalized W-algebras and integrable hierarchies
title_fullStr Generalized W-algebras and integrable hierarchies
title_full_unstemmed Generalized W-algebras and integrable hierarchies
title_short Generalized W-algebras and integrable hierarchies
title_sort generalized w-algebras and integrable hierarchies
topic General Theoretical Physics
url https://dx.doi.org/10.1016/0370-2693(92)90962-4
http://cds.cern.ch/record/226300
work_keys_str_mv AT burroughsnigel generalizedwalgebrasandintegrablehierarchies
AT degrootmark generalizedwalgebrasandintegrablehierarchies
AT hollowoodtimothyj generalizedwalgebrasandintegrablehierarchies
AT miramontesluis generalizedwalgebrasandintegrablehierarchies