Cargando…
Generalized W-algebras and integrable hierarchies
We report on generalizations of the KdV-type integrable hierarchies of Drinfel'd and Sokolov. These hierarchies lead to the existence of new classical $W$-algebras, which arise as the second Hamiltonian structure of the hierarchies. In particular, we present a construction of the $W_n^{(l)}$ al...
Autores principales: | Burroughs, Nigel, De Groot, Mark, Hollowood, Timothy J., Miramontes, Luis |
---|---|
Lenguaje: | eng |
Publicado: |
1991
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/0370-2693(92)90962-4 http://cds.cern.ch/record/226300 |
Ejemplares similares
-
Additional symmetries of generalized integrable hierarchies
por: Hollowood, Timothy J., et al.
Publicado: (1994) -
Tau-functions and generalized integrable hierarchies
por: Hollowood, Timothy J., et al.
Publicado: (1993) -
Generalized integrability and two-dimensional gravitation
por: Hollowood, Timothy J., et al.
Publicado: (1993) -
A string construction of a commutative non-associative algebra related to the exceptional Jordan algebra
por: Corrigan, E, et al.
Publicado: (1988) -
Comments on the algebra of straight, twisted and intertwining vertex operators
por: Corrigan, E, et al.
Publicado: (1988)