Cargando…
Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients
Many stochastic differential equations (SDEs) in the literature have a superlinearly growing nonlinearity in their drift or diffusion coefficient. Unfortunately, moments of the computationally efficient Euler-Maruyama approximation method diverge for these SDEs in finite time. This article develops...
Autores principales: | Hutzenthaler, Martin, Jentzen, Arnulf |
---|---|
Lenguaje: | eng |
Publicado: |
American Mathematical Society
2015
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2264063 |
Ejemplares similares
-
The Cauchy problem for non-Lipschitz semi-linear parabolic partial differential equations
por: Meyer, J C, et al.
Publicado: (2015) -
Numerical approximation of partial differential equations
por: Quarteroni, Alfio, et al.
Publicado: (1994) -
Numerical approximation of partial differential equations
por: Bartels, Sören
Publicado: (2016) -
Global optimization in action: continuous and lipschitz optimization algorithms, implementations and applications
por: Pintér, János D
Publicado: (1996) -
Numerical integration of stochastic differential equations
por: Milstein, G N
Publicado: (1995)