Cargando…
On the differential structure of metric measure spaces and applications
The main goals of this paper are: (i) To develop an abstract differential calculus on metric measure spaces by investigating the duality relations between differentials and gradients of Sobolev functions. This will be achieved without calling into play any sort of analysis in charts, our assumptions...
Autor principal: | Gigli, Nicola |
---|---|
Lenguaje: | eng |
Publicado: |
American Mathematical Society
2015
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2264064 |
Ejemplares similares
-
Gradient flows: in metric spaces and in the space of probability measures
por: Ambrosio, Luigi, et al.
Publicado: (2008) -
Gradient flows: in metric spaces and in the space of probability measures
por: Ambrosio, Luigi, et al.
Publicado: (2005) -
Probability measures on metric spaces
por: Parthasarathy, Kalyanapuram Rangachari, et al.
Publicado: (1967) -
Probability measures on metric spaces
por: Parthasarathy, K R
Publicado: (2005) -
Nonsmooth differential geometry-an approach tailored for spaces with Ricci curvature bounded from below
por: Gigli, Nicola
Publicado: (2018)