Cargando…
Deformation quantization for actions of Kählerian Lie groups
Let \mathbb{B} be a Lie group admitting a left-invariant negatively curved Kählerian structure. Consider a strongly continuous action \alpha of \mathbb{B} on a Fréchet algebra \mathcal{A}. Denote by \mathcal{A}^\infty the associated Fréchet algebra of smooth vectors for this action. In the Abelian c...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
American Mathematical Society
2015
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2264066 |
_version_ | 1780954287933751296 |
---|---|
author | Bieliavsky, Pierre Gayral, Victor |
author_facet | Bieliavsky, Pierre Gayral, Victor |
author_sort | Bieliavsky, Pierre |
collection | CERN |
description | Let \mathbb{B} be a Lie group admitting a left-invariant negatively curved Kählerian structure. Consider a strongly continuous action \alpha of \mathbb{B} on a Fréchet algebra \mathcal{A}. Denote by \mathcal{A}^\infty the associated Fréchet algebra of smooth vectors for this action. In the Abelian case \mathbb{B}=\mathbb{R}^{2n} and \alpha isometric, Marc Rieffel proved that Weyl's operator symbol composition formula (the so called Moyal product) yields a deformation through Fréchet algebra structures \{\star_{\theta}^\alpha\}_{\theta\in\mathbb{R}} on \mathcal{A}^\infty. When \mathcal{A} is a |
id | cern-2264066 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2015 |
publisher | American Mathematical Society |
record_format | invenio |
spelling | cern-22640662021-04-21T19:13:55Zhttp://cds.cern.ch/record/2264066engBieliavsky, PierreGayral, VictorDeformation quantization for actions of Kählerian Lie groupsMathematical Physics and MathematicsLet \mathbb{B} be a Lie group admitting a left-invariant negatively curved Kählerian structure. Consider a strongly continuous action \alpha of \mathbb{B} on a Fréchet algebra \mathcal{A}. Denote by \mathcal{A}^\infty the associated Fréchet algebra of smooth vectors for this action. In the Abelian case \mathbb{B}=\mathbb{R}^{2n} and \alpha isometric, Marc Rieffel proved that Weyl's operator symbol composition formula (the so called Moyal product) yields a deformation through Fréchet algebra structures \{\star_{\theta}^\alpha\}_{\theta\in\mathbb{R}} on \mathcal{A}^\infty. When \mathcal{A} is a American Mathematical Societyoai:cds.cern.ch:22640662015 |
spellingShingle | Mathematical Physics and Mathematics Bieliavsky, Pierre Gayral, Victor Deformation quantization for actions of Kählerian Lie groups |
title | Deformation quantization for actions of Kählerian Lie groups |
title_full | Deformation quantization for actions of Kählerian Lie groups |
title_fullStr | Deformation quantization for actions of Kählerian Lie groups |
title_full_unstemmed | Deformation quantization for actions of Kählerian Lie groups |
title_short | Deformation quantization for actions of Kählerian Lie groups |
title_sort | deformation quantization for actions of kählerian lie groups |
topic | Mathematical Physics and Mathematics |
url | http://cds.cern.ch/record/2264066 |
work_keys_str_mv | AT bieliavskypierre deformationquantizationforactionsofkahlerianliegroups AT gayralvictor deformationquantizationforactionsofkahlerianliegroups |