Cargando…

Deformation quantization for actions of Kählerian Lie groups

Let \mathbb{B} be a Lie group admitting a left-invariant negatively curved Kählerian structure. Consider a strongly continuous action \alpha of \mathbb{B} on a Fréchet algebra \mathcal{A}. Denote by \mathcal{A}^\infty the associated Fréchet algebra of smooth vectors for this action. In the Abelian c...

Descripción completa

Detalles Bibliográficos
Autores principales: Bieliavsky, Pierre, Gayral, Victor
Lenguaje:eng
Publicado: American Mathematical Society 2015
Materias:
Acceso en línea:http://cds.cern.ch/record/2264066
_version_ 1780954287933751296
author Bieliavsky, Pierre
Gayral, Victor
author_facet Bieliavsky, Pierre
Gayral, Victor
author_sort Bieliavsky, Pierre
collection CERN
description Let \mathbb{B} be a Lie group admitting a left-invariant negatively curved Kählerian structure. Consider a strongly continuous action \alpha of \mathbb{B} on a Fréchet algebra \mathcal{A}. Denote by \mathcal{A}^\infty the associated Fréchet algebra of smooth vectors for this action. In the Abelian case \mathbb{B}=\mathbb{R}^{2n} and \alpha isometric, Marc Rieffel proved that Weyl's operator symbol composition formula (the so called Moyal product) yields a deformation through Fréchet algebra structures \{\star_{\theta}^\alpha\}_{\theta\in\mathbb{R}} on \mathcal{A}^\infty. When \mathcal{A} is a
id cern-2264066
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2015
publisher American Mathematical Society
record_format invenio
spelling cern-22640662021-04-21T19:13:55Zhttp://cds.cern.ch/record/2264066engBieliavsky, PierreGayral, VictorDeformation quantization for actions of Kählerian Lie groupsMathematical Physics and MathematicsLet \mathbb{B} be a Lie group admitting a left-invariant negatively curved Kählerian structure. Consider a strongly continuous action \alpha of \mathbb{B} on a Fréchet algebra \mathcal{A}. Denote by \mathcal{A}^\infty the associated Fréchet algebra of smooth vectors for this action. In the Abelian case \mathbb{B}=\mathbb{R}^{2n} and \alpha isometric, Marc Rieffel proved that Weyl's operator symbol composition formula (the so called Moyal product) yields a deformation through Fréchet algebra structures \{\star_{\theta}^\alpha\}_{\theta\in\mathbb{R}} on \mathcal{A}^\infty. When \mathcal{A} is a American Mathematical Societyoai:cds.cern.ch:22640662015
spellingShingle Mathematical Physics and Mathematics
Bieliavsky, Pierre
Gayral, Victor
Deformation quantization for actions of Kählerian Lie groups
title Deformation quantization for actions of Kählerian Lie groups
title_full Deformation quantization for actions of Kählerian Lie groups
title_fullStr Deformation quantization for actions of Kählerian Lie groups
title_full_unstemmed Deformation quantization for actions of Kählerian Lie groups
title_short Deformation quantization for actions of Kählerian Lie groups
title_sort deformation quantization for actions of kählerian lie groups
topic Mathematical Physics and Mathematics
url http://cds.cern.ch/record/2264066
work_keys_str_mv AT bieliavskypierre deformationquantizationforactionsofkahlerianliegroups
AT gayralvictor deformationquantizationforactionsofkahlerianliegroups