Cargando…

Period functions for Maass wave forms and cohomology

The authors construct explicit isomorphisms between spaces of Maass wave forms and cohomology groups for discrete cofinite groups \Gamma\subset\mathrm{PSL}_2({\mathbb{R}}). In the case that \Gamma is the modular group \mathrm{PSL}_2({\mathbb{Z}}) this gives a cohomological framework for the results...

Descripción completa

Detalles Bibliográficos
Autores principales: Bruggeman, R, Lewis, J, Zagier, D, Bruggeman, R W
Lenguaje:eng
Publicado: American Mathematical Society 2015
Materias:
Acceso en línea:http://cds.cern.ch/record/2264076
_version_ 1780954290080186368
author Bruggeman, R
Lewis, J
Zagier, D
Bruggeman, R W
author_facet Bruggeman, R
Lewis, J
Zagier, D
Bruggeman, R W
author_sort Bruggeman, R
collection CERN
description The authors construct explicit isomorphisms between spaces of Maass wave forms and cohomology groups for discrete cofinite groups \Gamma\subset\mathrm{PSL}_2({\mathbb{R}}). In the case that \Gamma is the modular group \mathrm{PSL}_2({\mathbb{Z}}) this gives a cohomological framework for the results in Period functions for Maass wave forms. I, of J. Lewis and D. Zagier in Ann. Math. 153 (2001), 191-258, where a bijection was given between cuspidal Maass forms and period functions. The authors introduce the concepts of mixed parabolic cohomology group and semi-analytic vectors in principal serie
id cern-2264076
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2015
publisher American Mathematical Society
record_format invenio
spelling cern-22640762021-04-21T19:13:52Zhttp://cds.cern.ch/record/2264076engBruggeman, RLewis, JZagier, DBruggeman, R WPeriod functions for Maass wave forms and cohomologyMathematical Physics and MathematicsThe authors construct explicit isomorphisms between spaces of Maass wave forms and cohomology groups for discrete cofinite groups \Gamma\subset\mathrm{PSL}_2({\mathbb{R}}). In the case that \Gamma is the modular group \mathrm{PSL}_2({\mathbb{Z}}) this gives a cohomological framework for the results in Period functions for Maass wave forms. I, of J. Lewis and D. Zagier in Ann. Math. 153 (2001), 191-258, where a bijection was given between cuspidal Maass forms and period functions. The authors introduce the concepts of mixed parabolic cohomology group and semi-analytic vectors in principal serieAmerican Mathematical Societyoai:cds.cern.ch:22640762015
spellingShingle Mathematical Physics and Mathematics
Bruggeman, R
Lewis, J
Zagier, D
Bruggeman, R W
Period functions for Maass wave forms and cohomology
title Period functions for Maass wave forms and cohomology
title_full Period functions for Maass wave forms and cohomology
title_fullStr Period functions for Maass wave forms and cohomology
title_full_unstemmed Period functions for Maass wave forms and cohomology
title_short Period functions for Maass wave forms and cohomology
title_sort period functions for maass wave forms and cohomology
topic Mathematical Physics and Mathematics
url http://cds.cern.ch/record/2264076
work_keys_str_mv AT bruggemanr periodfunctionsformaasswaveformsandcohomology
AT lewisj periodfunctionsformaasswaveformsandcohomology
AT zagierd periodfunctionsformaasswaveformsandcohomology
AT bruggemanrw periodfunctionsformaasswaveformsandcohomology