Cargando…
Stability of line solitons for the KP-II equation in R2
The author proves nonlinear stability of line soliton solutions of the KP-II equation with respect to transverse perturbations that are exponentially localized as x\to\infty. He finds that the amplitude of the line soliton converges to that of the line soliton at initial time whereas jumps of the lo...
Autor principal: | Mizumachi, Tetsu |
---|---|
Lenguaje: | eng |
Publicado: |
American Mathematical Society
2015
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2264084 |
Ejemplares similares
-
Geometric approach to the soliton equations
por: Yanovski, A B
Publicado: (1996) -
Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation
por: Kamvissis, Spyridon, et al.
Publicado: (2003) -
Nonlinear Integrable Equations: Recursion Operators, Group Theoretical and Hamiltonian Structures of Soliton Equations
por: Konopelchenko, B G
Publicado: (1987) -
Conference on Nonlinear Evolution Equations, Solitons and the Inverse Scattering Transform
por: Ablowitz, M J, et al.
Publicado: (1987) -
On nonlinear equations admitting soliton solutions with a "de Broglie phase"
por: Baby, B V, et al.
Publicado: (1987)