Cargando…

Diffusions, superdiffusions and partial differential equations

Interactions between the theory of partial differential equations of elliptic and parabolic types and the theory of stochastic processes are beneficial for both probability theory and analysis. At the beginning, mostly analytic results were used by probabilists. More recently, analysts (and physicis...

Descripción completa

Detalles Bibliográficos
Autor principal: Dynkin, E B
Lenguaje:eng
Publicado: American Mathematical Society 2002
Materias:
Acceso en línea:http://cds.cern.ch/record/2264187
Descripción
Sumario:Interactions between the theory of partial differential equations of elliptic and parabolic types and the theory of stochastic processes are beneficial for both probability theory and analysis. At the beginning, mostly analytic results were used by probabilists. More recently, analysts (and physicists) took inspiration from the probabilistic approach. Of course, the development of analysis in general and of the theory of partial differential equations in particular, was motivated to a great extent by problems in physics. A difference between physics and probability is that the latter provides