Cargando…
Galois module structure
Galois module structure deals with the construction of algebraic invariants from a Galois extension of number fields with group G. Typically these invariants lie in the class-group of some group-ring of G or of a related order. These class-groups have "Hom-descriptions" in terms of idèlic-...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
American Mathematical Society
1994
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2264206 |
_version_ | 1780954336514277376 |
---|---|
author | Snaith, Victor P |
author_facet | Snaith, Victor P |
author_sort | Snaith, Victor P |
collection | CERN |
description | Galois module structure deals with the construction of algebraic invariants from a Galois extension of number fields with group G. Typically these invariants lie in the class-group of some group-ring of G or of a related order. These class-groups have "Hom-descriptions" in terms of idèlic-valued functions on the complex representations of G. Following a theme pioneered by A. Frölich, T. Chinburg constructed several invariants whose Hom-descriptions are (conjecturally) given in terms of Artin root numbers. For a tame extension, the second Chinburg invariant is given by the ring of integers, and |
id | cern-2264206 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 1994 |
publisher | American Mathematical Society |
record_format | invenio |
spelling | cern-22642062021-04-21T19:13:26Zhttp://cds.cern.ch/record/2264206engSnaith, Victor PGalois module structureMathematical Physics and MathematicsGalois module structure deals with the construction of algebraic invariants from a Galois extension of number fields with group G. Typically these invariants lie in the class-group of some group-ring of G or of a related order. These class-groups have "Hom-descriptions" in terms of idèlic-valued functions on the complex representations of G. Following a theme pioneered by A. Frölich, T. Chinburg constructed several invariants whose Hom-descriptions are (conjecturally) given in terms of Artin root numbers. For a tame extension, the second Chinburg invariant is given by the ring of integers, andAmerican Mathematical Societyoai:cds.cern.ch:22642061994 |
spellingShingle | Mathematical Physics and Mathematics Snaith, Victor P Galois module structure |
title | Galois module structure |
title_full | Galois module structure |
title_fullStr | Galois module structure |
title_full_unstemmed | Galois module structure |
title_short | Galois module structure |
title_sort | galois module structure |
topic | Mathematical Physics and Mathematics |
url | http://cds.cern.ch/record/2264206 |
work_keys_str_mv | AT snaithvictorp galoismodulestructure |