Cargando…

Galois module structure

Galois module structure deals with the construction of algebraic invariants from a Galois extension of number fields with group G. Typically these invariants lie in the class-group of some group-ring of G or of a related order. These class-groups have "Hom-descriptions" in terms of idèlic-...

Descripción completa

Detalles Bibliográficos
Autor principal: Snaith, Victor P
Lenguaje:eng
Publicado: American Mathematical Society 1994
Materias:
Acceso en línea:http://cds.cern.ch/record/2264206
_version_ 1780954336514277376
author Snaith, Victor P
author_facet Snaith, Victor P
author_sort Snaith, Victor P
collection CERN
description Galois module structure deals with the construction of algebraic invariants from a Galois extension of number fields with group G. Typically these invariants lie in the class-group of some group-ring of G or of a related order. These class-groups have "Hom-descriptions" in terms of idèlic-valued functions on the complex representations of G. Following a theme pioneered by A. Frölich, T. Chinburg constructed several invariants whose Hom-descriptions are (conjecturally) given in terms of Artin root numbers. For a tame extension, the second Chinburg invariant is given by the ring of integers, and
id cern-2264206
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 1994
publisher American Mathematical Society
record_format invenio
spelling cern-22642062021-04-21T19:13:26Zhttp://cds.cern.ch/record/2264206engSnaith, Victor PGalois module structureMathematical Physics and MathematicsGalois module structure deals with the construction of algebraic invariants from a Galois extension of number fields with group G. Typically these invariants lie in the class-group of some group-ring of G or of a related order. These class-groups have "Hom-descriptions" in terms of idèlic-valued functions on the complex representations of G. Following a theme pioneered by A. Frölich, T. Chinburg constructed several invariants whose Hom-descriptions are (conjecturally) given in terms of Artin root numbers. For a tame extension, the second Chinburg invariant is given by the ring of integers, andAmerican Mathematical Societyoai:cds.cern.ch:22642061994
spellingShingle Mathematical Physics and Mathematics
Snaith, Victor P
Galois module structure
title Galois module structure
title_full Galois module structure
title_fullStr Galois module structure
title_full_unstemmed Galois module structure
title_short Galois module structure
title_sort galois module structure
topic Mathematical Physics and Mathematics
url http://cds.cern.ch/record/2264206
work_keys_str_mv AT snaithvictorp galoismodulestructure