Cargando…
Quantum algebras and Poisson geometry in mathematical physics
This collection presents new and interesting applications of Poisson geometry to some fundamental well-known problems in mathematical physics. The methods used by the authors include, in addition to advanced Poisson geometry, unexpected algebras with non-Lie commutation relations, nontrivial (quantu...
Autor principal: | Karasev, M V |
---|---|
Lenguaje: | eng |
Publicado: |
American Mathematical Society
2005
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2264282 |
Ejemplares similares
-
Quantum potential physics, geometry and algebra
por: Licata, Ignazio, et al.
Publicado: (2014) -
Nonlinear poisson brackets: geometry and quantization
por: Karasev, M V, et al.
Publicado: (2012) -
Coherent transform, quantization, and Poisson geometry
por: Novikova, E, et al.
Publicado: (1998) -
Algebraic foundations of non-commutative differential geometry and quantum groups
por: Pittner, Ludwig
Publicado: (1996) -
Cluster algebras and Poisson geometry
por: Gekhtman, Michael, et al.
Publicado: (2014)