Cargando…
Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case
We construct a diagrammatic coaction acting on one-loop Feynman graphs and their cuts. The graphs are naturally identified with the corresponding (cut) Feynman integrals in dimensional regularization, whose coefficients of the Laurent expansion in the dimensional regulator are multiple polylogarithm...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP12(2017)090 http://cds.cern.ch/record/2264432 |
_version_ | 1780954360818171904 |
---|---|
author | Abreu, Samuel Britto, Ruth Duhr, Claude Gardi, Einan |
author_facet | Abreu, Samuel Britto, Ruth Duhr, Claude Gardi, Einan |
author_sort | Abreu, Samuel |
collection | CERN |
description | We construct a diagrammatic coaction acting on one-loop Feynman graphs and their cuts. The graphs are naturally identified with the corresponding (cut) Feynman integrals in dimensional regularization, whose coefficients of the Laurent expansion in the dimensional regulator are multiple polylogarithms (MPLs). Our main result is the conjecture that this diagrammatic coaction reproduces the combinatorics of the coaction on MPLs order by order in the Laurent expansion. We show that our conjecture holds in a broad range of nontrivial one-loop integrals. We then explore its consequences for the study of discontinuities of Feynman integrals, and the differential equations that they satisfy. In particular, using the diagrammatic coaction along with information from cuts, we explicitly derive differential equations for any one-loop Feynman integral. We also explain how to construct the symbol of any one-loop Feynman integral recursively. Finally, we show that our diagrammatic coaction follows, in the special case of one-loop integrals, from a more general coaction proposed recently, which is constructed by pairing master integrands with corresponding master contours. |
id | cern-2264432 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2017 |
record_format | invenio |
spelling | cern-22644322023-10-04T08:51:08Zdoi:10.1007/JHEP12(2017)090http://cds.cern.ch/record/2264432engAbreu, SamuelBritto, RuthDuhr, ClaudeGardi, EinanDiagrammatic Hopf algebra of cut Feynman integrals: the one-loop casehep-phParticle Physics - Phenomenologyhep-thParticle Physics - TheoryWe construct a diagrammatic coaction acting on one-loop Feynman graphs and their cuts. The graphs are naturally identified with the corresponding (cut) Feynman integrals in dimensional regularization, whose coefficients of the Laurent expansion in the dimensional regulator are multiple polylogarithms (MPLs). Our main result is the conjecture that this diagrammatic coaction reproduces the combinatorics of the coaction on MPLs order by order in the Laurent expansion. We show that our conjecture holds in a broad range of nontrivial one-loop integrals. We then explore its consequences for the study of discontinuities of Feynman integrals, and the differential equations that they satisfy. In particular, using the diagrammatic coaction along with information from cuts, we explicitly derive differential equations for any one-loop Feynman integral. We also explain how to construct the symbol of any one-loop Feynman integral recursively. Finally, we show that our diagrammatic coaction follows, in the special case of one-loop integrals, from a more general coaction proposed recently, which is constructed by pairing master integrands with corresponding master contours.arXiv:1704.07931CERN-TH-2017-092CP3-17-11EDINBURGH-2017-09FR-PHENO-2017-010TCDMATH-17-09oai:cds.cern.ch:22644322017-04-25 |
spellingShingle | hep-ph Particle Physics - Phenomenology hep-th Particle Physics - Theory Abreu, Samuel Britto, Ruth Duhr, Claude Gardi, Einan Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case |
title | Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case |
title_full | Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case |
title_fullStr | Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case |
title_full_unstemmed | Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case |
title_short | Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case |
title_sort | diagrammatic hopf algebra of cut feynman integrals: the one-loop case |
topic | hep-ph Particle Physics - Phenomenology hep-th Particle Physics - Theory |
url | https://dx.doi.org/10.1007/JHEP12(2017)090 http://cds.cern.ch/record/2264432 |
work_keys_str_mv | AT abreusamuel diagrammatichopfalgebraofcutfeynmanintegralstheoneloopcase AT brittoruth diagrammatichopfalgebraofcutfeynmanintegralstheoneloopcase AT duhrclaude diagrammatichopfalgebraofcutfeynmanintegralstheoneloopcase AT gardieinan diagrammatichopfalgebraofcutfeynmanintegralstheoneloopcase |