Cargando…
Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case
We construct a diagrammatic coaction acting on one-loop Feynman graphs and their cuts. The graphs are naturally identified with the corresponding (cut) Feynman integrals in dimensional regularization, whose coefficients of the Laurent expansion in the dimensional regulator are multiple polylogarithm...
Autores principales: | Abreu, Samuel, Britto, Ruth, Duhr, Claude, Gardi, Einan |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP12(2017)090 http://cds.cern.ch/record/2264432 |
Ejemplares similares
-
The diagrammatic coaction and the algebraic structure of cut Feynman integrals
por: Abreu, Samuel, et al.
Publicado: (2018) -
Diagrammatic Coaction of Two-Loop Feynman Integrals
por: Abreu, Samuel, et al.
Publicado: (2019) -
The algebraic structure of cut Feynman integrals and the diagrammatic coaction
por: Abreu, Samuel, et al.
Publicado: (2017) -
The diagrammatic coaction beyond one loop
por: Abreu, Samuel, et al.
Publicado: (2021) -
Coaction for Feynman integrals and diagrams
por: Abreu, Samuel, et al.
Publicado: (2018)