Cargando…

ATLAS muon detector

Muon detectors from the outer layer of the ATLAS experiment at the Large Hadron Collider. Over a million individual detectors combine to make up the outer layer of ATLAS. All of this is exclusively to track the muons, the only detectable particles to make it out so far from the collision point. How...

Descripción completa

Detalles Bibliográficos
Publicado: 2017
Materias:
Acceso en línea:http://cds.cern.ch/record/2264550
_version_ 1780954368317587456
collection CERN
description Muon detectors from the outer layer of the ATLAS experiment at the Large Hadron Collider. Over a million individual detectors combine to make up the outer layer of ATLAS. All of this is exclusively to track the muons, the only detectable particles to make it out so far from the collision point. How the muon’s path curves in the magnetic field depends on how fast it is travelling. A fast muon curves only a very little, a slower one curves a lot. Together with the calorimeters, the muon detectors play an essential role in deciding which collisions to store and which to ignore. Certain signals from muons are a sure sign of exciting discoveries. To make sure the data from these collisions is not lost, some of the muon detectors react very quickly and trigger the electronics to record. The other detectors take a little longer, but are much more precise. Their job is to measure exactly where the muons have passed, calculating the curvature of their tracks in the magnetic field to the nearest five hundredths of a millimetre. Even these precision detectors are not exactly sluggish – they react within a millionth of a second. Such a fast response is essential when new collisions are occurring in the centre of ATLAS 40 million times every second! This muon detector is a drift tube - an aluminium tube with a wall thickness of some 1/10 mm that is filled with a special gas mixture. Inside the tube there is a wire that is tightened all over the length of the tube and fixed at the end caps. Particles (or ionizing radiation) that enter the tube ionize the gas molecules and liberate electrons. Since there is a high voltage between the wire and the tube wall, the released negatively charged electrons move towards the wire in the centre of the tube. On their way to the central wire, the moving electrons induce an electric signal that can be amplified and registered by further electronics.
id cern-2264550
institution Organización Europea para la Investigación Nuclear
publishDate 2017
record_format invenio
spelling cern-22645502021-04-15T12:58:13Zhttp://cds.cern.ch/record/2264550ATLAS muon detectorDetectors and experimental techniquesMuon detectors from the outer layer of the ATLAS experiment at the Large Hadron Collider. Over a million individual detectors combine to make up the outer layer of ATLAS. All of this is exclusively to track the muons, the only detectable particles to make it out so far from the collision point. How the muon’s path curves in the magnetic field depends on how fast it is travelling. A fast muon curves only a very little, a slower one curves a lot. Together with the calorimeters, the muon detectors play an essential role in deciding which collisions to store and which to ignore. Certain signals from muons are a sure sign of exciting discoveries. To make sure the data from these collisions is not lost, some of the muon detectors react very quickly and trigger the electronics to record. The other detectors take a little longer, but are much more precise. Their job is to measure exactly where the muons have passed, calculating the curvature of their tracks in the magnetic field to the nearest five hundredths of a millimetre. Even these precision detectors are not exactly sluggish – they react within a millionth of a second. Such a fast response is essential when new collisions are occurring in the centre of ATLAS 40 million times every second! This muon detector is a drift tube - an aluminium tube with a wall thickness of some 1/10 mm that is filled with a special gas mixture. Inside the tube there is a wire that is tightened all over the length of the tube and fixed at the end caps. Particles (or ionizing radiation) that enter the tube ionize the gas molecules and liberate electrons. Since there is a high voltage between the wire and the tube wall, the released negatively charged electrons move towards the wire in the centre of the tube. On their way to the central wire, the moving electrons induce an electric signal that can be amplified and registered by further electronics. CERN-OBJ-DE-073oai:cds.cern.ch:22645502017-05-15T09:59:25Z
spellingShingle Detectors and experimental techniques
ATLAS muon detector
title ATLAS muon detector
title_full ATLAS muon detector
title_fullStr ATLAS muon detector
title_full_unstemmed ATLAS muon detector
title_short ATLAS muon detector
title_sort atlas muon detector
topic Detectors and experimental techniques
url http://cds.cern.ch/record/2264550