Cargando…
The analytic structure and the transcendental weight of the BFKL ladder at NLL accuracy
We study some analytic properties of the BFKL ladder at next-to-leading logarithmic accuracy (NLLA). We use a procedure by Chirilli and Kovchegov to construct the NLO eigenfunctions, and we show that the BFKL ladder can be evaluated order by order in the coupling in terms of certain generalised sing...
Autores principales: | Del Duca, Vittorio, Duhr, Claude, Marzucca, Robin, Verbeek, Bram |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP10(2017)001 http://cds.cern.ch/record/2266434 |
Ejemplares similares
-
The seven-gluon amplitude in multi-Regge kinematics beyond leading logarithmic accuracy
por: Del Duca, Vittorio, et al.
Publicado: (2018) -
Amplitudes in the Multi-Regge Limit of $\mathcal{N}$=4 SYM
por: Del Duca, Vittorio, et al.
Publicado: (2019) -
Multi-Loop Amplitudes in the High-Energy Limit in N=4 SYM
por: Del Duca, Vittorio, et al.
Publicado: (2018) -
The status of NLL BFKL
por: Salam, G.P.
Publicado: (2000) -
An analytic solution for the equal-mass banana graph
por: Broedel, Johannes, et al.
Publicado: (2019)