Cargando…

Uncertain rule-based fuzzy systems: introduction and new directions

The second edition of this textbook provides a fully updated approach to fuzzy sets and systems that can model uncertainty — i.e., “type-2” fuzzy sets and systems. The author demonstrates how to overcome the limitations of classical fuzzy sets and systems, enabling a wide range of applications from...

Descripción completa

Detalles Bibliográficos
Autor principal: Mendel, Jerry M
Lenguaje:eng
Publicado: Springer 2017
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-319-51370-6
http://cds.cern.ch/record/2267207
Descripción
Sumario:The second edition of this textbook provides a fully updated approach to fuzzy sets and systems that can model uncertainty — i.e., “type-2” fuzzy sets and systems. The author demonstrates how to overcome the limitations of classical fuzzy sets and systems, enabling a wide range of applications from time-series forecasting to knowledge mining to control. In this new edition, a bottom-up approach is presented that begins by introducing classical (type-1) fuzzy sets and systems, and then explains how they can be modified to handle uncertainty. The author covers fuzzy rule-based systems – from type-1 to interval type-2 to general type-2 – in one volume. For hands-on experience, the book provides information on accessing MatLab and Java software to complement the content. The book features a full suite of classroom material. Presents fully updated material on new breakthroughs in human-inspired rule-based techniques for handling real-world uncertainties; Allows those already familiar with type-1 fuzzy sets and systems to rapidly come up to speed to type-2 fuzzy sets and systems; Features complete classroom material including end-of-chapter exercises, a solutions manual, and three case studies -- forecasting of time series to knowledge mining from surveys and PID control.