Cargando…

Mass: the quest to understand matter from Greek atoms to quantum fields

Everything around us is made of 'stuff', from planets, to books, to our own bodies. Whatever it is, we call it matter or material substance. It is solid; it has mass. But what is matter, exactly? We are taught in school that matter is not continuous, but discrete. As a few of the philosoph...

Descripción completa

Detalles Bibliográficos
Autor principal: Baggott, Jim
Lenguaje:eng
Publicado: Oxford University Press 2017
Materias:
Acceso en línea:http://cds.cern.ch/record/2267778
_version_ 1780954646572957696
author Baggott, Jim
author_facet Baggott, Jim
author_sort Baggott, Jim
collection CERN
description Everything around us is made of 'stuff', from planets, to books, to our own bodies. Whatever it is, we call it matter or material substance. It is solid; it has mass. But what is matter, exactly? We are taught in school that matter is not continuous, but discrete. As a few of the philosophers of ancient Greece once speculated, nearly two and a half thousand years ago, matter comes in 'lumps', and science has relentlessly peeled away successive layers of matter to reveal its ultimate constituents. Surely, we can't keep doing this indefinitely. We imagine that we should eventually run up against some kind of ultimately fundamental, indivisible type of stuff, the building blocks from which everything in the Universe is made. The English physicist Paul Dirac called this 'the dream of philosophers'. But science has discovered that the foundations of our Universe are not as solid or as certain and dependable as we might have once imagined. They are instead built from ghosts and phantoms, of a peculiar quantum kind. And, at some point on this exciting journey of scientific discovery, we lost our grip on the reassuringly familiar concept of mass. How did this happen? How did the answers to our questions become so complicated and so difficult to comprehend? In Mass Jim Baggott explains how we come to find ourselves here, confronted by a very different understanding of the nature of matter, the origin of mass, and its implications for our understanding of the material world. Ranging from the Greek philosophers Leucippus and Democritus, and their theories of atoms and void, to the development of quantum field theory and the discovery of a Higgs boson-like particle, he explores our changing understanding of the nature of matter, and the fundamental related concept of mass.
id cern-2267778
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2017
publisher Oxford University Press
record_format invenio
spelling cern-22677782021-04-21T19:11:32Zhttp://cds.cern.ch/record/2267778engBaggott, JimMass: the quest to understand matter from Greek atoms to quantum fieldsPhysics in GeneralEverything around us is made of 'stuff', from planets, to books, to our own bodies. Whatever it is, we call it matter or material substance. It is solid; it has mass. But what is matter, exactly? We are taught in school that matter is not continuous, but discrete. As a few of the philosophers of ancient Greece once speculated, nearly two and a half thousand years ago, matter comes in 'lumps', and science has relentlessly peeled away successive layers of matter to reveal its ultimate constituents. Surely, we can't keep doing this indefinitely. We imagine that we should eventually run up against some kind of ultimately fundamental, indivisible type of stuff, the building blocks from which everything in the Universe is made. The English physicist Paul Dirac called this 'the dream of philosophers'. But science has discovered that the foundations of our Universe are not as solid or as certain and dependable as we might have once imagined. They are instead built from ghosts and phantoms, of a peculiar quantum kind. And, at some point on this exciting journey of scientific discovery, we lost our grip on the reassuringly familiar concept of mass. How did this happen? How did the answers to our questions become so complicated and so difficult to comprehend? In Mass Jim Baggott explains how we come to find ourselves here, confronted by a very different understanding of the nature of matter, the origin of mass, and its implications for our understanding of the material world. Ranging from the Greek philosophers Leucippus and Democritus, and their theories of atoms and void, to the development of quantum field theory and the discovery of a Higgs boson-like particle, he explores our changing understanding of the nature of matter, and the fundamental related concept of mass.Jim Baggott explores how our understanding of the nature of matter, and its fundamental property of mass, has developed, from the ancient Greek view of indivisible atoms to quantum mechanics, dark matter, the Higgs field, and beyond. He shows how the stuff of the universe is proving more elusive and uncertain than we ever imagined.Oxford University Pressoai:cds.cern.ch:22677782017
spellingShingle Physics in General
Baggott, Jim
Mass: the quest to understand matter from Greek atoms to quantum fields
title Mass: the quest to understand matter from Greek atoms to quantum fields
title_full Mass: the quest to understand matter from Greek atoms to quantum fields
title_fullStr Mass: the quest to understand matter from Greek atoms to quantum fields
title_full_unstemmed Mass: the quest to understand matter from Greek atoms to quantum fields
title_short Mass: the quest to understand matter from Greek atoms to quantum fields
title_sort mass: the quest to understand matter from greek atoms to quantum fields
topic Physics in General
url http://cds.cern.ch/record/2267778
work_keys_str_mv AT baggottjim massthequesttounderstandmatterfromgreekatomstoquantumfields