Cargando…
Shock formation in small-data solutions to 3D quasilinear wave equations
In 1848 James Challis showed that smooth solutions to the compressible Euler equations can become multivalued, thus signifying the onset of a shock singularity. Today it is known that, for many hyperbolic systems, such singularities often develop. However, most shock-formation results have been prov...
Autor principal: | Speck, Jared |
---|---|
Lenguaje: | eng |
Publicado: |
American Mathematical Society
2016
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2279699 |
Ejemplares similares
-
Linear and quasilinear elleptic equations
por: Ladyzhenskaya, Olga A, et al.
Publicado: (1968) -
Linear and quasilinear elliptic equations
por: Ladyzhenskaya
Publicado: (1968) -
Moving interfaces and quasilinear parabolic evolution equations
por: Prüss, Jan, et al.
Publicado: (2016) -
Parabolic quasilinear equations minimizing linear growth functionals
por: Andreu-Vaillo, Fuensanta, et al.
Publicado: (2004) -
Quasilinear Hyperbolic Systems: Global Existence and Breakdown of Classical Solutions
por: Tatsien, Li, et al.
Publicado: (2009)