Cargando…

Topologically protected states in one-dimensional systems

The authors study a class of periodic Schrödinger operators, which in distinguished cases can be proved to have linear band-crossings or "Dirac points". They then show that the introduction of an "edge", via adiabatic modulation of these periodic potentials by a domain wall, resu...

Descripción completa

Detalles Bibliográficos
Autores principales: Fefferman, C L, Lee-Thorp, J P, Weinstein, M I
Lenguaje:eng
Publicado: American Mathematical Society 2017
Materias:
Acceso en línea:http://cds.cern.ch/record/2279737
Descripción
Sumario:The authors study a class of periodic Schrödinger operators, which in distinguished cases can be proved to have linear band-crossings or "Dirac points". They then show that the introduction of an "edge", via adiabatic modulation of these periodic potentials by a domain wall, results in the bifurcation of spatially localized "edge states". These bound states are associated with the topologically protected zero-energy mode of an asymptotic one-dimensional Dirac operator. The authors' model captures many aspects of the phenomenon of topologically protected edge states for two-dimensional bulk structures such as the honeycomb structure of graphene. The states the authors construct can be realized as highly robust TM-electromagnetic modes for a class of photonic waveguides with a phase-defect.