Cargando…

From Frenet to Cartan

The method of moving frames originated in the early nineteenth century with the notion of the Frenet frame along a curve in Euclidean space. Later, Darboux expanded this idea to the study of surfaces. The method was brought to its full power in the early twentieth century by Elie Cartan, and its dev...

Descripción completa

Detalles Bibliográficos
Autor principal: Clelland, Jeanne N
Lenguaje:eng
Publicado: American Mathematical Society 2017
Materias:
Acceso en línea:http://cds.cern.ch/record/2279740
_version_ 1780955469288833024
author Clelland, Jeanne N
author_facet Clelland, Jeanne N
author_sort Clelland, Jeanne N
collection CERN
description The method of moving frames originated in the early nineteenth century with the notion of the Frenet frame along a curve in Euclidean space. Later, Darboux expanded this idea to the study of surfaces. The method was brought to its full power in the early twentieth century by Elie Cartan, and its development continues today with the work of Fels, Olver, and others. This book is an introduction to the method of moving frames as developed by Cartan, at a level suitable for beginning graduate students familiar with the geometry of curves and surfaces in Euclidean space. The main focus is on the use of this method to compute local geometric invariants for curves and surfaces in various 3-dimensional homogeneous spaces, including Euclidean, Minkowski, equi-affine, and projective spaces. Later chapters include applications to several classical problems in differential geometry, as well as an introduction to the nonhomogeneous case via moving frames on Riemannian manifolds. The book is written in a reader-friendly style, building on already familiar concepts from curves and surfaces in Euclidean space. A special feature of this book is the inclusion of detailed guidance regarding the use of the computer algebra system Maple™ to perform many of the computations involved in the exercises. An excellent and unique graduate level exposition of the differential geometry of curves, surfaces and higher-dimensional submanifolds of homogeneous spaces based on the powerful and elegant method of moving frames. The treatment is self-contained and illustrated through a large number of examples and exercises, augmented by Maple code to assist in both concrete calculations and plotting. Highly recommended. -Niky Kamran, McGill University The method of moving frames has seen a tremendous explosion of research activity in recent years, expanding into many new areas of applications, from computer vision to the calculus of variations to geometric partial differential equations to geometric numerical integration schemes to classical invariant theory to integrable systems to infinite-dimensional Lie pseudo-groups and beyond. Cartan theory remains a touchstone in modern differential geometry, and Clelland's book provides a fine new introduction that includes both classic and contemporary geometric developments and is supplemented by Maple symbolic software routines that enable the reader to both tackle the exercises and delve further into this fascinating and important field of contemporary mathematics. Recommended for students and researchers wishing to expand their geometric horizons. -Peter Olver, University of Minnesota.
id cern-2279740
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2017
publisher American Mathematical Society
record_format invenio
spelling cern-22797402021-04-21T19:05:46Zhttp://cds.cern.ch/record/2279740engClelland, Jeanne NFrom Frenet to CartanMathematical Physics and MathematicsThe method of moving frames originated in the early nineteenth century with the notion of the Frenet frame along a curve in Euclidean space. Later, Darboux expanded this idea to the study of surfaces. The method was brought to its full power in the early twentieth century by Elie Cartan, and its development continues today with the work of Fels, Olver, and others. This book is an introduction to the method of moving frames as developed by Cartan, at a level suitable for beginning graduate students familiar with the geometry of curves and surfaces in Euclidean space. The main focus is on the use of this method to compute local geometric invariants for curves and surfaces in various 3-dimensional homogeneous spaces, including Euclidean, Minkowski, equi-affine, and projective spaces. Later chapters include applications to several classical problems in differential geometry, as well as an introduction to the nonhomogeneous case via moving frames on Riemannian manifolds. The book is written in a reader-friendly style, building on already familiar concepts from curves and surfaces in Euclidean space. A special feature of this book is the inclusion of detailed guidance regarding the use of the computer algebra system Maple™ to perform many of the computations involved in the exercises. An excellent and unique graduate level exposition of the differential geometry of curves, surfaces and higher-dimensional submanifolds of homogeneous spaces based on the powerful and elegant method of moving frames. The treatment is self-contained and illustrated through a large number of examples and exercises, augmented by Maple code to assist in both concrete calculations and plotting. Highly recommended. -Niky Kamran, McGill University The method of moving frames has seen a tremendous explosion of research activity in recent years, expanding into many new areas of applications, from computer vision to the calculus of variations to geometric partial differential equations to geometric numerical integration schemes to classical invariant theory to integrable systems to infinite-dimensional Lie pseudo-groups and beyond. Cartan theory remains a touchstone in modern differential geometry, and Clelland's book provides a fine new introduction that includes both classic and contemporary geometric developments and is supplemented by Maple symbolic software routines that enable the reader to both tackle the exercises and delve further into this fascinating and important field of contemporary mathematics. Recommended for students and researchers wishing to expand their geometric horizons. -Peter Olver, University of Minnesota.American Mathematical Societyoai:cds.cern.ch:22797402017
spellingShingle Mathematical Physics and Mathematics
Clelland, Jeanne N
From Frenet to Cartan
title From Frenet to Cartan
title_full From Frenet to Cartan
title_fullStr From Frenet to Cartan
title_full_unstemmed From Frenet to Cartan
title_short From Frenet to Cartan
title_sort from frenet to cartan
topic Mathematical Physics and Mathematics
url http://cds.cern.ch/record/2279740
work_keys_str_mv AT clellandjeannen fromfrenettocartan