Cargando…
From Frenet to Cartan
The method of moving frames originated in the early nineteenth century with the notion of the Frenet frame along a curve in Euclidean space. Later, Darboux expanded this idea to the study of surfaces. The method was brought to its full power in the early twentieth century by Elie Cartan, and its dev...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
American Mathematical Society
2017
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2279740 |
_version_ | 1780955469288833024 |
---|---|
author | Clelland, Jeanne N |
author_facet | Clelland, Jeanne N |
author_sort | Clelland, Jeanne N |
collection | CERN |
description | The method of moving frames originated in the early nineteenth century with the notion of the Frenet frame along a curve in Euclidean space. Later, Darboux expanded this idea to the study of surfaces. The method was brought to its full power in the early twentieth century by Elie Cartan, and its development continues today with the work of Fels, Olver, and others. This book is an introduction to the method of moving frames as developed by Cartan, at a level suitable for beginning graduate students familiar with the geometry of curves and surfaces in Euclidean space. The main focus is on the use of this method to compute local geometric invariants for curves and surfaces in various 3-dimensional homogeneous spaces, including Euclidean, Minkowski, equi-affine, and projective spaces. Later chapters include applications to several classical problems in differential geometry, as well as an introduction to the nonhomogeneous case via moving frames on Riemannian manifolds. The book is written in a reader-friendly style, building on already familiar concepts from curves and surfaces in Euclidean space. A special feature of this book is the inclusion of detailed guidance regarding the use of the computer algebra system Maple™ to perform many of the computations involved in the exercises. An excellent and unique graduate level exposition of the differential geometry of curves, surfaces and higher-dimensional submanifolds of homogeneous spaces based on the powerful and elegant method of moving frames. The treatment is self-contained and illustrated through a large number of examples and exercises, augmented by Maple code to assist in both concrete calculations and plotting. Highly recommended. -Niky Kamran, McGill University The method of moving frames has seen a tremendous explosion of research activity in recent years, expanding into many new areas of applications, from computer vision to the calculus of variations to geometric partial differential equations to geometric numerical integration schemes to classical invariant theory to integrable systems to infinite-dimensional Lie pseudo-groups and beyond. Cartan theory remains a touchstone in modern differential geometry, and Clelland's book provides a fine new introduction that includes both classic and contemporary geometric developments and is supplemented by Maple symbolic software routines that enable the reader to both tackle the exercises and delve further into this fascinating and important field of contemporary mathematics. Recommended for students and researchers wishing to expand their geometric horizons. -Peter Olver, University of Minnesota. |
id | cern-2279740 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2017 |
publisher | American Mathematical Society |
record_format | invenio |
spelling | cern-22797402021-04-21T19:05:46Zhttp://cds.cern.ch/record/2279740engClelland, Jeanne NFrom Frenet to CartanMathematical Physics and MathematicsThe method of moving frames originated in the early nineteenth century with the notion of the Frenet frame along a curve in Euclidean space. Later, Darboux expanded this idea to the study of surfaces. The method was brought to its full power in the early twentieth century by Elie Cartan, and its development continues today with the work of Fels, Olver, and others. This book is an introduction to the method of moving frames as developed by Cartan, at a level suitable for beginning graduate students familiar with the geometry of curves and surfaces in Euclidean space. The main focus is on the use of this method to compute local geometric invariants for curves and surfaces in various 3-dimensional homogeneous spaces, including Euclidean, Minkowski, equi-affine, and projective spaces. Later chapters include applications to several classical problems in differential geometry, as well as an introduction to the nonhomogeneous case via moving frames on Riemannian manifolds. The book is written in a reader-friendly style, building on already familiar concepts from curves and surfaces in Euclidean space. A special feature of this book is the inclusion of detailed guidance regarding the use of the computer algebra system Maple™ to perform many of the computations involved in the exercises. An excellent and unique graduate level exposition of the differential geometry of curves, surfaces and higher-dimensional submanifolds of homogeneous spaces based on the powerful and elegant method of moving frames. The treatment is self-contained and illustrated through a large number of examples and exercises, augmented by Maple code to assist in both concrete calculations and plotting. Highly recommended. -Niky Kamran, McGill University The method of moving frames has seen a tremendous explosion of research activity in recent years, expanding into many new areas of applications, from computer vision to the calculus of variations to geometric partial differential equations to geometric numerical integration schemes to classical invariant theory to integrable systems to infinite-dimensional Lie pseudo-groups and beyond. Cartan theory remains a touchstone in modern differential geometry, and Clelland's book provides a fine new introduction that includes both classic and contemporary geometric developments and is supplemented by Maple symbolic software routines that enable the reader to both tackle the exercises and delve further into this fascinating and important field of contemporary mathematics. Recommended for students and researchers wishing to expand their geometric horizons. -Peter Olver, University of Minnesota.American Mathematical Societyoai:cds.cern.ch:22797402017 |
spellingShingle | Mathematical Physics and Mathematics Clelland, Jeanne N From Frenet to Cartan |
title | From Frenet to Cartan |
title_full | From Frenet to Cartan |
title_fullStr | From Frenet to Cartan |
title_full_unstemmed | From Frenet to Cartan |
title_short | From Frenet to Cartan |
title_sort | from frenet to cartan |
topic | Mathematical Physics and Mathematics |
url | http://cds.cern.ch/record/2279740 |
work_keys_str_mv | AT clellandjeannen fromfrenettocartan |