Cargando…

Introduction to $p$-adic analytic number theory

This book is an elementary introduction to p-adic analysis from the number theory perspective. With over 100 exercises included, it will acquaint the non-expert to the basic ideas of the theory and encourage the novice to enter this fertile field of research. The main focus of the book is the study...

Descripción completa

Detalles Bibliográficos
Autor principal: Murty, M Ram
Lenguaje:eng
Publicado: American Mathematical Society 2002
Materias:
Acceso en línea:http://cds.cern.ch/record/2279749
Descripción
Sumario:This book is an elementary introduction to p-adic analysis from the number theory perspective. With over 100 exercises included, it will acquaint the non-expert to the basic ideas of the theory and encourage the novice to enter this fertile field of research. The main focus of the book is the study of p-adic L-functions and their analytic properties. It begins with a basic introduction to Bernoulli numbers and continues with establishing the Kummer congruences. These congruences are then used to construct the p-adic analog of the Riemann zeta function and p-adic analogs of Dirichlet's L-functions. Featured is a chapter on how to apply the theory of Newton polygons to determine Galois groups of polynomials over the rational number field. As motivation for further study, the final chapter introduces Iwasawa theory.