Cargando…
Dynamical zeta functions for piecewise monotone maps of the interval
Consider a space M, a map f:M\to M, and a function g:M \to {\mathbb C}. The formal power series \zeta (z) = \exp \sum ^\infty _{m=1} \frac {z^m}{m} \sum _{x \in \mathrm {Fix}\,f^m} \prod ^{m-1}_{k=0} g (f^kx) yields an example of a dynamical zeta function. Such functions have unexpected analytic pro...
Autor principal: | Ruelle, David |
---|---|
Lenguaje: | eng |
Publicado: |
American Mathematical Society
2004
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2279783 |
Ejemplares similares
-
Dynamical zeta functions for piecewise monotone maps of the interval
por: Ruelle, David
Publicado: (1994) -
Iterates of piecewise monotone mappings on an interval
por: Preston, Chris
Publicado: (1988) -
Sharp zeta functions for smooth interval maps
por: Ruelle, D
Publicado: (1995) -
Dynamical zeta functions and dynamical determinants for hyperbolic maps: a functional approach
por: Baladi, Viviane
Publicado: (2018) -
Stability of dynamical systems: on the role of monotonic and non-monotonic Lyapunov functions
por: Michel, Anthony N, et al.
Publicado: (2015)