Cargando…

Anomaly Detection using Machine Learning for Data Quality Monitoring in the CMS Experiment

Detalles Bibliográficos
Autor principal: Seth, Agrima
Lenguaje:eng
Publicado: 2017
Materias:
Acceso en línea:http://cds.cern.ch/record/2280012
_version_ 1780955498086924288
author Seth, Agrima
author_facet Seth, Agrima
author_sort Seth, Agrima
collection CERN
id cern-2280012
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2017
record_format invenio
spelling cern-22800122022-11-03T21:19:23Zhttp://cds.cern.ch/record/2280012engSeth, AgrimaAnomaly Detection using Machine Learning for Data Quality Monitoring in the CMS ExperimentCERN openlab summer students' lightning talks 1CERN openlab Summer Student programme 2017oai:cds.cern.ch:22800122017
spellingShingle CERN openlab Summer Student programme 2017
Seth, Agrima
Anomaly Detection using Machine Learning for Data Quality Monitoring in the CMS Experiment
title Anomaly Detection using Machine Learning for Data Quality Monitoring in the CMS Experiment
title_full Anomaly Detection using Machine Learning for Data Quality Monitoring in the CMS Experiment
title_fullStr Anomaly Detection using Machine Learning for Data Quality Monitoring in the CMS Experiment
title_full_unstemmed Anomaly Detection using Machine Learning for Data Quality Monitoring in the CMS Experiment
title_short Anomaly Detection using Machine Learning for Data Quality Monitoring in the CMS Experiment
title_sort anomaly detection using machine learning for data quality monitoring in the cms experiment
topic CERN openlab Summer Student programme 2017
url http://cds.cern.ch/record/2280012
work_keys_str_mv AT sethagrima anomalydetectionusingmachinelearningfordataqualitymonitoringinthecmsexperiment
AT sethagrima cernopenlabsummerstudentslightningtalks1